推进量子物质 构建原子块的"黄金法则"

推进量子物质构建原子块的"黄金法则"时钟模型显示了时针(顶部hBN)、分针(中间石墨烯)和秒针(底部hBN)之间的旋转排列。顶部石墨烯、中部石墨烯和底部石墨烯的组合在时钟中心形成了超漩涡晶格结构。资料来源:新加坡国立大学超级摩尔纹当两个完全相同的周期性结构重叠在一起,它们之间有一个相对的扭转角,或者两个不同的周期性结构重叠在一起,但有或没有扭转角时,就会形成摩尔纹。扭转角是指两种结构的晶体学取向之间的夹角。例如,当石墨烯和六方氮化硼(hBN)这两种层状材料相互叠加时,两种结构中的原子并不完全对齐,从而产生一种干涉条纹图案,称为摩尔纹。这就产生了电子重构。石墨烯和氢化硼中的摩尔纹已被用于创造具有奇特性质的新结构,如拓扑电流和霍夫斯塔特蝴蝶态。当两个摩尔纹叠加在一起时,就会产生一种称为超摩尔纹晶格的新结构。与传统的单一摩尔纹材料相比,这种超级摩尔纹晶格扩大了可调材料特性的范围,从而有可能应用于更多领域。新加坡国立大学物理系的成果新加坡国立大学物理系Ariando教授领导的研究团队开发了一种技术,并成功实现了hBN/石墨烯/hBN超漩涡晶格的受控排列。这项技术可以精确地排列两个摩尔纹图案,一个在另一个之上。同时,研究人员还制定了"黄金三法则",以指导如何使用他们的技术来创建超级漩涡晶格。研究成果最近发表在《自然-通讯》(NatureCommunications)杂志上。石墨烯与顶层六方氮化硼(T-hBN)和底层六方氮化硼(B-hBN)之间形成的具有扭曲角度(θt和θb)的超漩涡晶格的艺术图解。轻微的错位导致了超漩涡晶格图案的形成。来源:《自然-通讯挑战与解决方案创建石墨烯超褶皱晶格面临三大挑战。首先,传统的光学配准在很大程度上依赖于石墨烯的直边,但要找到合适的石墨烯薄片费时费力;其次,即使使用直边石墨烯样品,由于其边缘手性和晶格对称性的不确定性,获得双配准超oiré晶格的概率也很低,只有1/8。第三,虽然可以确定边缘手性和晶格对称性,但对齐误差往往很大(大于0.5度),因为对齐两种不同的晶格材料具有物理挑战性。研究论文的第一作者胡俊雄博士说:"我们的技术有助于解决现实生活中的问题。许多研究人员告诉我,制作一个样品通常需要近一周的时间。有了我们的技术,他们不仅可以大大缩短制作时间,还能大大提高样品的精确度"。技术见解科学家们首先使用"30°旋转技术"来控制顶部氢化硼和石墨烯层的对齐。然后,他们使用"翻转技术"来控制顶部hBN层和底部hBN层的对齐。基于这两种方法,他们可以控制晶格对称性并调整石墨烯超漩涡晶格的带状结构。他们还证明,邻近的石墨边缘可以作为堆叠排列的导向。在这项研究中,他们制作了20个摩尔纹样品,精度优于0.2度。Ariando教授说:"我们已经为我们的技术确立了三条黄金法则,这可以帮助二维材料界的许多研究人员。许多研究其他强相关系统(如魔角扭曲双层石墨烯或ABC堆积多层石墨烯)的科学家也有望从我们的工作中受益。通过这一技术改进,我希望能加速下一代摩尔量子物质的发展。"未来的努力目前,研究团队正在利用这项技术制造单层石墨烯超漩涡晶格,探索这种材料体系的独特性质。此外,他们还在将目前的技术推广到其他材料系统,以发现其他新奇的量子现象。...PC版:https://www.cnbeta.com.tw/articles/soft/1381233.htm手机版:https://m.cnbeta.com.tw/view/1381233.htm

相关推荐

封面图片

石墨烯的扭曲科学:探索奇异物质的新量子尺

石墨烯的扭曲科学:探索奇异物质的新量子尺插图描述了NIST团队在实验中使用的两层石墨烯(两个双层),用于研究摩尔纹量子材料的一些奇特性质。左侧插图是两个双层石墨烯部分的俯视图,显示了当一个双层石墨烯相对于另一个双层石墨烯扭转一个小角度时形成的摩尔纹。资料来源:B.Hayes/NIST根据扭曲角度的不同,这些被称为摩尔量子物质的材料可以突然产生自己的磁场,成为零电阻的超导体,或者相反,变成完美的绝缘体。约瑟夫-A-斯特里西奥(JosephA.Stroscio)和他在美国国家标准与技术研究院(NIST)的同事以及一个国际合作团队开发了一种"量子尺",用于测量和探索这些扭曲材料的奇异特性。这项工作还可能带来一种新的、微型化的电阻标准,可以直接在工厂车间校准电子设备,而无需将它们送到异地的标准实验室。来自弗吉尼亚州费尔法克斯乔治梅森大学的物理学家费雷什特-加哈里(FereshteGhahari)是这项研究的合作者,他利用两层直径约为20微米的石墨烯(称为双层石墨烯),相对于另两层石墨烯进行扭曲,制造出了一个摩尔量子物质装置。加哈里利用NIST纳米科学与技术中心的纳米加工设备制造了这个装置。随后,NIST研究人员马鲁-斯洛特(MarlouSlot)和尤利娅-马克西门科(YuliaMaximenko)将这种扭曲的材料装置冷却到绝对零度以上的百分之一,从而减少了原子和电子的随机运动,提高了材料中电子相互作用的能力。达到超低温后,他们研究了改变强外部磁场强度时石墨烯层中电子的能级如何变化。测量和操纵电子的能级对于设计和制造半导体器件至关重要。这幅摩尔纹量子材料中一个点的放大图描绘了电子(右边的红点和蓝点)的阶梯状能级。阶梯的背景类似于图纸能量,表明测量到的能级可以作为一种量子尺来确定材料的电学和磁学特性。资料来源:NIST/B.海耶斯电子运动和能级为了测量能级,研究小组使用了斯特里西奥在NIST设计和制造的多功能扫描隧道显微镜。当研究人员在磁场中对石墨烯双层膜施加电压时,显微镜会记录从材料"隧穿"到显微镜探针尖端的电子所产生的微小电流。在磁场中,电子以圆形轨迹运动。通常,固体材料中电子的圆形轨道与外加磁场有着特殊的关系:由于电子的量子特性,每个圆形轨道所包围的面积乘以外加磁场,只能得到一组固定的离散值。为了保持固定的乘积,如果磁场减半,那么电子轨道所包围的面积就必须增加一倍。遵循这一规律的连续能级之间的能量差,就像尺子上的刻度线一样,可以用来测量材料的电子和磁性能。任何与这一模式的细微偏差都代表着一种新的量子标尺,可以反映出研究人员正在研究的特定量子摩尔纹材料的轨道磁特性。发现与影响事实上,当NIST的研究人员改变施加在摩尔纹石墨烯双层膜上的磁场时,他们发现了新量子标尺发挥作用的证据。电子圆形轨道所包围的面积乘以外加磁场不再等于一个固定值。相反,这两个数字的乘积发生了偏移,偏移量取决于双层石墨的磁化程度。这种偏差转化为电子能级的一组不同刻度线。这些发现有望为我们揭示局限在石墨烯扭曲薄片中的电子如何产生新的磁性带来新的启示。斯特里西奥说:"利用新的量子标尺来研究圆形轨道如何随磁场变化,我们希望能揭示这些摩尔纹量子材料的微妙磁特性。"量子摩尔材料中的电子被一个形似鸡蛋盒的电势所困住;电子集中在鸡蛋盒的山谷(低能态)中。资料来源:S.Kelley/NIST在摩尔量子材料中,电子具有一系列可能的能量--高能和低能,形状就像鸡蛋盒--这是由材料的电场决定的。电子集中在纸盒的低能态或谷中。NIST理论物理学家保罗-哈尼(PaulHaney)说,双层石墨烯中的谷之间的间距很大,大于任何单层石墨烯或未扭曲的多层石墨烯中的原子间距,这也是研究小组发现的一些不寻常磁性的原因。研究人员,包括来自马里兰大学学院帕克分校和联合量子研究所(NIST与马里兰大学的合作研究机构)的同事,在《科学》杂志上介绍了他们的工作。未来前景与应用由于摩尔量子物质的特性可以通过选择特定的扭转角度和原子薄层的数量来实现,因此新的测量结果有望让人们更深入地了解科学家如何定制和优化量子材料的磁性和电子特性,以满足微电子学和相关领域的大量应用需求。例如,人们已经知道超薄超导体是非常灵敏的单光子探测器,而量子摩尔超导体则是最薄的超导体之一。NIST团队还对另一种应用感兴趣:在适当的条件下,摩尔量子物质可以提供一种新的、更易于使用的电阻标准。目前的标准是基于一种材料在二维层中的电子受到强磁场作用时产生的离散电阻值。这种现象被称为量子霍尔效应,源于上文讨论的电子在圆形轨道上的量子化能级。离散电阻值可用于校准各种电气设备中的电阻。不过,由于需要强大的磁场,校准只能在NIST等计量设施中进行。斯特里西奥说,如果研究人员能操纵量子摩尔物质,使其在没有外加磁场的情况下也能产生净磁化,那么就有可能利用它来创建一种新的便携式最精确电阻标准,即反常量子霍尔电阻标准。电子设备的校准可在制造现场进行,从而节省数百万美元。...PC版:https://www.cnbeta.com.tw/articles/soft/1388617.htm手机版:https://m.cnbeta.com.tw/view/1388617.htm

封面图片

上海微系统所在大尺寸石墨烯制备及导热应用方面获进展

上海微系统所在大尺寸石墨烯制备及导热应用方面获进展石墨烯材料的可控制备是石墨烯行业的基础,更是石墨烯在下游应用中充分发挥性能优势的关键。在批量制造石墨烯材料的过程中,精确控制石墨烯片层厚度、横向尺寸和化学结构等参数已成为石墨烯在热管理、新能源、纤维等领域应用的瓶颈。鳞片石墨剥离技术是发展最为成熟的石墨烯规模化制备技术之一,该方法已实现石墨烯片层厚度和化学结构的精确控制,但在横向尺寸调控方面仍面临挑战,典型的石墨烯横向尺寸分布在几百纳米到几个微米以内。单一石墨烯片的的横向尺寸越大,所组装构建的宏观结构在导热、导电和力学等性能方面具有更大的提升潜力和空间。因此,亟待发展横向尺寸在几十微米、甚至几百微米的大尺寸石墨烯材料规模化高效可控制备技术,而实现这一目标必须从制备机理上创新和突破。近日,针对传统技术利用长时间、强氧化剂环境氧化剥离石墨存在剪切破碎严重、横向尺寸难保持等关键科学问题,中国科学院上海微系统与信息技术研究所丁古巧课题组在前期独创的“离域电化学解理”方法(ChemicalEngineeringJournal)和“预解理再剥离”技术(Carbon)的基础上,提出了“氧化新鲜石墨烯网络结构”新策略。该策略首先利用离域电化学法深度解理石墨获得多孔的石墨烯网络结构,然后对获得的石墨烯多孔网络结构进行氧化剥离,因多孔网络结构为氧化剂的输运提供了高速通道,实现了氧化剂当量和氧化剥离时间的同步大幅减小(图1a),氧化剂当量从通常报道的2-5减少至1,氧化时间从通常的3-5h下降到1h,为大尺寸石墨烯材料的制备提供了新思路。图1.(a)“氧化石墨烯网络结构”策略示意图;(b)大尺寸氧化石墨烯横向尺寸及分布;(c)大尺寸氧化石墨烯的晶格结构分析;(d、e)“氧化新鲜石墨烯网络”策略的优势。该方法在不引入后续筛选处理的情况下实现了大尺寸高晶格质量氧化石墨烯的高效制备。将石墨剥离过程中横向尺寸保持率提高到目前文献报道最好水平的1.5-2倍,将氧化石墨烯的平均尺寸极限从~120μm提升到~180μm(图1b)。结构表征数据表明,所制备的水相可分散大尺寸氧化石墨烯具有完全不同于传统氧化石墨烯的晶格结构,也不同于一般的石墨烯,是介于氧化石墨烯和高质量石墨烯之间的一种特殊结构石墨烯材料。氧化剂当量和氧化时间同时减少抑制了石墨/石墨烯碎裂,并在很大程度上保留了石墨原料的sp2结构,在剥离形成的石墨烯片中形成了“晶区网络包围非晶区岛”的特殊晶格结构(图1c)。机理研究发现,深度预解理石墨结构并保持其“新鲜性”对于石墨烯横向尺寸保持至关重要,传统方法在预解理和氧化剥离体系之间切换时引入的洗涤干燥等过程不可忽视。现有预解理方法较难将石墨解理成石墨烯网络结构,且溶液体系切换不可避免的片层“回叠”效应在很大程度上破坏了新构建的氧化剂输运通道。相反,“离域电化学解理”体系较好地匹配了氧化剥离体系,从根本上避免了不同体系...PC版:https://www.cnbeta.com/articles/soft/1303311.htm手机版:https://m.cnbeta.com/view/1303311.htm

封面图片

天然双层石墨烯内发现新奇量子效应

天然双层石墨烯内发现新奇量子效应由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。2004年,两位英国科学家用一种非常简单的实验方法从石墨中剥离出石墨片,并借助特殊胶带得到仅由一层碳原子构成的石墨烯。石墨烯是强度最高的材料之一,具有很好的韧性、超强导热性与导电性,应用前景十分广阔。如果将两层石墨烯彼此以特定的角度偏转,所得到的系统甚至会表现出超导性和其他激发量子效应,如磁性。但迄今为止,很难制备出这种偏转的双层石墨烯。在最新研究中,科学家们使用了天然形成的双层石墨烯。他们首先使用简单的胶带从一块石墨中分离出石墨烯样品。为观察量子力学效应,施加了垂直于样品的高电场。他们发现,所得到系统的电子结构发生了变化,且拥有类似能量的电荷载流子出现强烈的累积效应。研究进一步发现,在略高于绝对零度(-273.15℃)下,石墨烯中的电子可相互作用,出现了各种意想不到且复杂的量子相。如相互作用导致电子自旋对齐,使材料在没有施加外部影响的情况下具有磁性。通过改变电场,研究人员也能不断改变双层石墨烯中载流子相互作用的强度。此外,电子运动的自由度在特定条件下会受限,形成电子晶格,且由于相互排斥作用,不再有助于传输电荷,导致系统对电绝缘。哥廷根大学物理系托马斯·韦茨教授表示,新系统的主要优势之一在于材料制备非常简单,研究人员不需要像以前那样在高温下才能获得所需结果,可用于进一步研究各种量子态及量子计算机等。PC版:https://www.cnbeta.com/articles/soft/1305337.htm手机版:https://m.cnbeta.com/view/1305337.htm

封面图片

研究人员通过彩虹散射破解"神奇材料"石墨烯的奥秘

研究人员通过彩虹散射破解"神奇材料"石墨烯的奥秘石墨烯还可能存在结构缺陷,在某些情况下,这些缺陷会对其功能造成损害,而在其他情况下,这些缺陷对其所选择的应用至关重要。这意味着,通过控制缺陷的实施,可以对石墨烯二维晶体的理想特性进行微调。在《欧洲物理杂志D》(EPJD)发表的一篇新论文中,塞尔维亚贝尔格莱德大学温查核科学研究所的米利沃耶-哈季约伊奇和马尔科-乔西奇研究了光子穿过石墨烯时的彩虹散射,以及它如何揭示这种神奇材料的结构和缺陷。虽然还有其他研究石墨烯瑕疵的方法,但这些方法都有缺点。例如,拉曼光谱无法区分某些缺陷类型,而高分辨率透射电子显微镜能以出色的分辨率表征晶体结构缺陷,但其使用的高能电子会使晶格退化。"彩虹效应在自然界中并不罕见。在原子和分子散射中也发现了彩虹效应。它是在薄晶体的离子散射实验中被探测到的。我们从理论上研究了低能质子在石墨烯上的散射,证明彩虹效应也发生在这一过程中,"Hadžijojić说。"此外,我们还证明,可以通过质子彩虹散射效应研究石墨烯结构和热振动"。二人利用一种称为彩虹散射的过程,观察了质子穿过石墨烯时所产生的衍射以及所形成的"彩虹"图案。研究人员对衍射图样进行了特征描述,发现完美的石墨烯呈现出彩虹图案,其中中间部分是一条单线,内部部分呈现出六边形对称图案,而不完美的石墨烯则不具备这种对称性。科学家们还得出结论,特定的缺陷类型会产生各自不同的彩虹图案,这可以在未来的研究中用于识别和表征石墨烯样品中的缺陷类型。哈季约吉奇总结说:"我们的方法相当独特,有可能成为石墨烯和类似二维材料的一种有用的补充表征技术。...PC版:https://www.cnbeta.com.tw/articles/soft/1374327.htm手机版:https://m.cnbeta.com.tw/view/1374327.htm

封面图片

量子电路的革命:石墨烯的精密工程

量子电路的革命:石墨烯的精密工程圣地亚哥-德-坎波斯特拉大学生物化学和分子材料研究中心(CiQUS-USC)的DiegoPeña教授,ICN2团队的前成员、目前在坎塔布里亚大学担任研究员的CesarMoreno博士,以及多诺斯蒂亚国际物理中心(DIPC)和Ikerbasque基金会的AranGarcia-Lekue博士已经做了类似的事情,但在单原子尺度上,目的是合成具有可调整特性的新型碳基材料。正如刚刚发表在《美国化学学会杂志》(JACS)上的一篇论文所解释的那样,这项研究是原子薄型材料精确工程的一个重大突破--由于其尺寸减少而被称为"二维材料"。所提出的制造技术为材料科学开辟了令人兴奋的新的可能性,特别是在先进的电子产品和未来可持续能源的解决方案中的应用。该研究被刊登在《美国化学会杂志》(JACS)的封面上。资料来源:MariaTenorio博士和DámasoTorres-ICN2这项研究的作者通过连接被称为"纳米带"的超窄石墨烯条,通过由苯基分子(是大分子的一部分)组成的灵活"桥梁",合成了一种新的纳米多孔石墨烯结构。通过连续修改这些桥的结构和角度,科学家们可以控制纳米带通道之间的量子连通性,并最终对石墨烯纳米结构的电子特性进行微调。这种可调性也可以由外部刺激控制,如应变或电场,为不同的应用提供机会。这些突破性的发现来自于西班牙顶级机构(CiQUS、ICN2、坎塔布里亚大学、DIPC)和丹麦技术大学(DTU)之间的合作,表明所提出的分子桥策略可以对具有定制属性的新材料的合成产生巨大影响,是实现量子电路的有力工具。这些电路执行的操作与传统电路类似,尽管与后者不同,量子电路利用了量子效应和现象。这些系统的设计和实现与量子计算机的发展极为相关。但本研究提出的方法的潜在应用超越了未来的电子设备和计算机。事实上,它还可以导致热电纳米材料的发展,这在可再生能源发电和废热回收方面可以产生重要影响,因此解决了另一个关键的社会挑战。...PC版:https://www.cnbeta.com.tw/articles/soft/1357837.htm手机版:https://m.cnbeta.com.tw/view/1357837.htm

封面图片

石墨烯研究的最新进展有助于廉价、可持续地生产氢气

石墨烯研究的最新进展有助于廉价、可持续地生产氢气这一科学传奇始于十年前,当时曼彻斯特大学的科学家证明了石墨烯对氢原子核质子的渗透性。这一发现出乎意料,与理论预测相悖,理论预测认为质子需要数十亿年才能穿过石墨烯致密的晶体结构。由于这种差异,有一种理论认为质子可能是通过石墨烯结构中的小孔(或针孔)而不是晶格本身渗透的。石墨烯是以二维蜂巢晶格排列的单层碳原子。石墨烯以其卓越的强度、导电性和超薄性而闻名,是科学和技术领域最有前途的多功能材料之一。最近,由PatrickUnwin教授领导的华威大学和由MarceloLozada-Hidalgo博士和AndreGeim教授领导的曼彻斯特大学联合在《自然》杂志上发表了他们的研究成果。通过超高空间分辨率测量,他们最终证明了完美的石墨烯晶体确实允许质子传输。令人惊讶的是,他们还发现质子在石墨烯晶体中存在的纳米级皱纹和波纹周围被强烈加速。质子在二维晶体中传输的意外不均匀性。资料来源:《自然》/DOI:10.1038/s41586-023-06247-6对氢经济的影响这一突破性发现对氢经济具有重大意义。目前生成和使用氢气的机制通常依赖于昂贵的催化剂和薄膜,其中一些对环境有显著影响。用石墨烯等可持续二维晶体取代这些材料,可在推进绿色制氢、减少碳排放和帮助实现净零碳环境方面发挥关键作用。为了得出结论,研究人员采用了扫描电化学电池显微镜(SECCM)。这项技术使他们能够测量纳米级区域的微小质子电流,让研究人员能够直观地看到质子电流通过石墨烯膜的空间分布。如果质子运动仅限于石墨烯上的孔,那么电流就会被隔离在特定的点上。然而,并没有观察到这种集中的电流,从而推翻了关于石墨烯结构中存在孔洞的理论。研究人员的评论和观察该研究的主要作者SegunWahab博士和EnricoDaviddi博士对石墨烯晶体中没有缺陷表示惊讶,他们说:"我们惊讶地发现石墨烯晶体中完全没有缺陷。我们的研究结果从微观上证明了石墨烯对质子具有内在的渗透性"。意想不到的是,质子电流在晶体纳米级皱纹周围被加速。科学家们发现,这是因为皱纹有效地"拉伸"了石墨烯晶格,从而为质子渗透原始晶格提供了更大的空间。现在,这一观察结果使实验与理论相吻合。洛萨达-伊达尔戈博士说:"我们实际上是在拉伸原子尺度的网格,并观察到更大的电流通过网格中被拉伸的原子间空间--这确实令人匪夷所思"。Unwin教授评论道:"这些结果展示了我们实验室开发的SECCM是一种从微观角度深入了解电化学界面的强大技术,它为设计涉及质子的下一代膜和分离器开辟了令人兴奋的可能性。"研究小组对这一发现如何为新型氢技术铺平道路持乐观态度。Lozada-Hidalgo博士说:"利用二维晶体中波纹和褶皱的催化活性是加速离子传输和化学反应的一种全新方法。这可能导致氢相关技术的低成本催化剂的开发。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379509.htm手机版:https://m.cnbeta.com.tw/view/1379509.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人