研究发现记忆障碍饱和脂肪会阻碍老化大脑的记忆形成

研究发现记忆障碍饱和脂肪会阻碍老化大脑的记忆形成同一实验室在早些时候对衰老大鼠的研究中发现,高加工成分饮食会导致大脑产生强烈的炎症反应,并伴有记忆力衰退的行为表现,而补充DHA则可以防止这些问题。俄亥俄州立大学行为医学研究所研究员、医学院精神病学和行为健康与神经科学副教授、资深作者露丝-巴里恩托斯(RuthBarrientos)说:"这篇论文最酷的地方在于,我们第一次真正开始按细胞类型来区分这些东西。我们实验室和其他实验室经常研究海马体的整体组织,观察大脑对高脂肪饮食的记忆反应。但我们一直很好奇哪些细胞类型会或多或少地受到这些饱和脂肪酸的影响,这是我们首次尝试确定这一点"。这项研究最近发表在《细胞神经科学前沿》(FrontiersinCellularNeuroscience)杂志上。在这项工作中,研究人员重点研究了小胶质细胞(大脑中促进炎症的细胞)和海马神经元(对学习和记忆非常重要)。他们使用了永生化细胞--取自动物组织的细胞拷贝,这些细胞经过改造,可以不断分裂,只对实验室刺激做出反应,这意味着它们的行为可能与同类型原代细胞的行为并不完全一致。研究人员让这些模型小胶质细胞和神经元接触棕榈酸(猪油、起酥油、肉类和乳制品等高脂食品中含量最高的饱和脂肪酸),以观察棕榈酸如何影响细胞内的基因激活以及线粒体的功能(线粒体是细胞内的结构,具有产生能量的主要代谢作用)。结果表明,棕榈酸会促使基因表达发生变化,这与小胶质细胞和神经元中炎症的增加有关,但小胶质细胞中受影响的炎症基因范围更广。用一定剂量的DHA(鱼类和其他海产品中的两种欧米加-3脂肪酸之一,也可以用补充剂形式获得)预处理这些细胞,对两种细胞类型的炎症增加都有很强的保护作用。这项研究的第一作者、巴里恩托斯实验室的研究科学家迈克尔-巴特勒(MichaelButler)说:"以前的研究表明,DHA对大脑有保护作用,而棕榈酸对脑细胞有害,但这是我们第一次研究DHA如何在这些小胶质细胞中直接抵御棕榈酸的影响。"然而,当涉及线粒体时,DHA并不能阻止暴露于棕榈酸后的功能丧失。在这种情况下,DHA的保护作用可能仅限于对与促炎反应有关的基因表达的影响,而不是饱和脂肪也会诱发的代谢缺陷。在另一组实验中,研究人员通过观察另一种叫做突触修剪的小胶质细胞功能,研究了高饱和脂肪饮食如何影响老年小鼠大脑中的信号传递。小胶质细胞监控神经元之间的信号传递,并啃掉多余的突触棘(轴突和树突之间的连接点),以保持理想的通信水平。小胶质细胞暴露在含有突触前和突触后材料的小鼠脑组织中,这些材料来自喂食高脂肪饮食或普通饲料三天的动物。小胶质细胞吃掉高脂饮食老年小鼠突触的速度比吃掉普通饮食小鼠突触的速度更快--这表明高脂饮食对这些突触产生了某种作用,使小胶质细胞有理由以更高的速度吃掉它们。巴特勒说:"当我们谈论需要进行的修剪或细化时,这就像'金发姑娘'(Goldilocks):它需要达到最佳状态--不能太多,也不能太少,如果这些小胶质细胞过早地吃掉太多东西,就会超过这些棘刺重新生长和建立新连接的能力,因此记忆就无法巩固或稳定。"从这里开始,研究人员计划扩展与突触修剪和线粒体功能有关的发现,并观察棕榈酸和DHA在幼年和老年动物的初级脑细胞中的作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1387349.htm手机版:https://m.cnbeta.com.tw/view/1387349.htm

相关推荐

封面图片

研究发现高脂肪饮食会降低大脑对食物消耗的调节能力

研究发现高脂肪饮食会降低大脑对食物消耗的调节能力宾夕法尼亚州立大学医学院的研究人员提出,星形细胞(大脑中的大型星形细胞,调节大脑中神经元的许多不同功能)调节短期卡路里摄入。这些细胞控制着大脑和肠道之间的信号传导途径。持续吃高脂肪/高热量饮食似乎会破坏这种信号通路。了解大脑的作用和导致暴饮暴食的复杂机制,这种行为会导致体重增加和肥胖,可以帮助开发治疗方法。肥胖是一个全球公共卫生问题,因为它与心血管疾病和2型糖尿病的风险增加有关。在英国,63%的成年人被认为超过了健康体重,其中约有一半人患有肥胖症。每三个离开小学的儿童中就有一个超重或肥胖。大鼠脑干在控制饮食条件下(上)和高脂肪饮食喂养3天后(下)的照片显示星形细胞(GFAP;绿色)染色的增加。下面是控制饮食(左)和高脂肪饮食(右)的高倍放大图像。资料来源:CourtneyClyburn等人,10.1113/JP283566美国宾夕法尼亚州立医学院的KirsteenBrowning博士说:"热量摄入似乎在短期内受到星形胶质细胞的调节。我们发现,短暂接触(三到五天)高脂肪/高热量饮食对星形胶质细胞的影响最大,触发了控制胃的正常信号通路。随着时间的推移,星形胶质细胞似乎对高脂肪的食物不敏感了。在吃高脂肪/高热量饮食的10-14天左右,星形胶质细胞似乎没有反应,大脑调节卡路里摄入的能力似乎丧失。这扰乱了对胃的信号传递,推迟了胃的排空方式"。当摄入高脂肪/高热量的食物时,星形细胞最初会做出反应。它们的激活触发了胶质传导物质的释放,这些化学物质(包括谷氨酸和ATP)会兴奋神经细胞,并使正常的信号传导途径刺激控制胃部工作方式的神经元。这确保了胃正确地收缩,以应对食物通过消化系统时的填充和排空。当星形胶质细胞被抑制时,该级联就被破坏了。信号化学品的减少导致了消化的延迟,因为胃不能适当地填充和排空。这项有力的调查利用行为观察来监测大鼠(N=205,133只雄性,72只雌性)的食物摄入量,这些大鼠被喂以对照或高脂肪/卡路里饮食,为期1、3、5或14天。这与药理学和专家遗传学方法(体内和体外)相结合,针对不同的神经回路。使研究人员能够专门抑制脑干(连接大脑和脊髓的大脑后部)特定区域的星形胶质细胞,因此他们可以评估单个神经元的行为方式,以研究大鼠清醒时的行为。人类研究将需要进行,以确认同样的机制是否发生在人类身上。如果是这样的话,将需要进一步的测试,以评估该机制是否可以安全地成为目标,而不破坏其他神经通路。研究人员已计划进一步探索这一机制。克尔斯滕-布朗宁博士说:"我们还没有发现星形胶质细胞活动和信号机制的丧失是暴饮暴食的原因,还是它发生在对暴饮暴食的反应中。我们急切地想知道是否有可能重新激活大脑明显失去的调节卡路里摄入的能力。如果是这样的话,它可能会导致干预措施,以帮助恢复人类的卡路里调节"。...PC版:https://www.cnbeta.com.tw/articles/soft/1350505.htm手机版:https://m.cnbeta.com.tw/view/1350505.htm

封面图片

研究发现高脂肪饮食会刺激骨骼产生炎症免疫细胞

研究发现高脂肪饮食会刺激骨骼产生炎症免疫细胞研究结果可能有助于解释高脂肪饮食是如何引发炎症的,炎症可能导致肥胖个体产生胰岛素抵抗、2型糖尿病和其他并发症。被称为单核细胞的炎症免疫细胞侵入脂肪组织是肥胖的标志,但导致这种有害现象的原因尚不清楚。骨髓中产生包括单核细胞在内的许多免疫细胞,对环境变化非常敏感。科学家们已经证明,骨髓中的脂肪细胞会在高脂肪饮食的作用下迅速膨胀。PC版:https://www.cnbeta.com/articles/soft/1319573.htm手机版:https://m.cnbeta.com/view/1319573.htm

封面图片

研究发现垃圾食品会严重损害成长中的大脑 影响长期记忆

研究发现垃圾食品会严重损害成长中的大脑影响长期记忆作为垃圾食品的代名词,西方饮食对身心健康的影响当之无愧地受到了恶评。从广义上讲,西式饮食是一种富含加工食品、饱和脂肪和单糖的饮食,与热量摄入过多、肥胖和代谢功能障碍有关。但是,西式饮食对成长中的大脑功能有什么影响呢?青少年的大脑是一项"正在进行的工作"。在10到24岁之间,大脑会发生重大变化,而这些变化在很大程度上受到遗传、荷尔蒙、睡眠和饮食等因素的影响。以往的研究表明,饮食,尤其是西方饮食与认知功能障碍有关。南加州大学(USC)研究人员的一项新研究探讨了高脂肪、高糖饮食如何损害青少年大脑,影响记忆力。他们对幼鼠和青少年鼠进行了研究。南加州大学生物科学教授、该研究的通讯作者斯科特-卡诺斯基(ScottKanoski)说:"我们不仅在这篇论文中看到,而且在我们最近的其他一些工作中也看到,如果这些老鼠在这种垃圾食品饮食中长大,那么它们的这些记忆障碍就不会消失。如果只是让它们吃健康的食物,不幸的是,这些影响会一直持续到成年。"研究人员给大鼠喂食垃圾食品"自助餐厅式"饮食,以模仿西方饮食习惯,或者喂食标准食物。食用相当于西方饮食的食物的大鼠可以自由食用高脂肪、高糖的食物、薯片、巧克力花生酱杯和高果糖玉米糖浆饮料。大鼠从出生后第26天到出生后第56天(即幼年和青春发育期)都食用各自的食物。此时,食用西方饮食的大鼠将改用健康饮食干预。实验的目的是测试依赖于大脑海马体的外显记忆。这是对特定时间和地点发生的日常事件的长期记忆(例如,对七岁生日派对的记忆)。记忆测试包括让大鼠探索不同地点的新物体。几天后,老鼠再次进入几乎相同的场景,只是增加了一个新物体。结果发现,西式饮食会导致外显记忆受损,而且在开始健康饮食后仍会持续。与对照组饮食的大鼠相比,西式饮食的大鼠表现出对场景的熟悉程度,而对照组饮食的大鼠则表现出记不清以前见过哪个物体以及在哪里见过。西式饮食并没有明显改变用于评估大脑海马区以外区域的记忆测试结果。研究人员最感兴趣的是了解西式饮食如何影响神经递质乙酰胆碱的水平,乙酰胆碱对记忆和学习至关重要。海马体的正常记忆功能依赖于乙酰胆碱,而阿尔茨海默氏症患者大脑中的乙酰胆碱水平往往特别低。在完成记忆测试和死后研究时,对两组老鼠的乙酰胆碱水平进行了测量。"乙酰胆碱信号是一种帮助它们(大鼠)编码和记忆这些事件的机制,类似于人类的'外显记忆',它能让我们记住过去的事件,"领衔作者安娜-海斯说。"这种信号似乎没有发生在吃高脂肪、高糖饮食长大的动物身上"。在西方饮食干预的早期就观察到了肠道微生物组的变化,但在引入健康饮食后得到了纠正。微生物组健康得到恢复,但记忆损伤却持续存在,这表明是乙酰胆碱而不是微生物组导致了这些损伤。有趣而且重要的是,西方饮食引起的持续记忆损伤是在对体重和新陈代谢没有影响的情况下发生的。这表明生命早期的饮食会对大脑功能产生长期影响,而与肥胖无关。虽然将垃圾食品改为健康饮食并不能减轻与不良饮食有关的记忆缺陷,但研究人员可以使用模拟乙酰胆碱的药物来逆转这种缺陷。在进行记忆测试前,将药物直接注射到海马体中,可以改善西方饮食引起的记忆表现。研究结果的意义显而易见。年轻人,尤其是大脑正处于关键发育阶段的青少年如果食用西式饮食,就有可能对大脑功能造成长期损害。卡诺斯基说:"我不知道该怎么说才不会听起来像卡珊德拉和厄运降临,但不幸的是,有些事情在成年后可能更容易逆转,但如果发生在儿童时期,就不那么容易逆转了。"*在希腊神话中,卡珊德拉是特洛伊国王和王后的女儿。阿波罗神迷恋她的美貌,赐予她预言的能力。当她拒绝阿波罗时,阿波罗诅咒了她,这样就没有人会相信她的预言(往往是可怕的预言),包括警告特洛伊人不要接受希腊对手赠送的臭名昭著的木马。还需要进行更多的研究,探讨如何扭转西方饮食导致的青春期记忆问题。这项研究发表在《大脑、行为和免疫》(Brain,Behavior,andImmunity)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1427610.htm手机版:https://m.cnbeta.com.tw/view/1427610.htm

封面图片

揭开脂肪储存的秘密 - 细胞可将棕榈酸转化成油酸

揭开脂肪储存的秘密-细胞可将棕榈酸转化成油酸小鼠脂肪细胞中的脂肪液滴:脂肪滴的膜被染成绿色,而储存在其中的脂肪被染成红色。资料来源:JohannaSpandl/波恩大学"直到现在,这些问题还没有真正的答案,"波恩大学LIMES研究所的ChristophThiele教授博士解释说。"在过去的50年里,确实有这种永久性重建的间接证据。然而,到目前为止,还缺乏这方面的直接证据"。问题是:为了证明甘油三酯被分解,脂肪酸被修改并重新纳入新的分子,人们需要跟踪它们在身体中的转变。然而,每个细胞中都有成千上万种不同形式的甘油三酯。因此,跟踪单个脂肪酸是非常困难的。Thiele说:"我们已经开发出一种方法,使我们能够给脂肪酸贴上一个特殊的标签,使它们变得明确无误。他的研究小组以这种方式标记了各种脂肪酸,并将它们加入到小鼠脂肪细胞的营养介质中。然后小鼠细胞将标记的分子纳入甘油三酯中。实验结果能够表明,这些甘油三酯并没有保持不变,而是不断地被降解和重塑。"研究人员解释说:"每个脂肪酸每天大约分裂两次并重新连接到另一个脂肪分子上。但这是为什么呢?毕竟,这种转换需要花费能量,而这些能量是作为废热释放的--细胞从中得到了什么?直到现在,人们还认为细胞需要这个过程来平衡能量的储存和供应。或者,它也许只是身体产生热量的一种方式。我们的结果现在指向一个完全不同的解释,有可能在这个过程中,脂肪被转化为身体需要的东西。"不易利用的脂肪酸因此会被提炼成更高质量的变体,并以这种形式储存起来,直到它们被需要。脂肪酸主要由碳原子组成,它们像火车的车厢一样一个一个地挂在后面。它们的长度可能非常不同:有些只由10个碳原子组成,有些则由16个甚至更多。在他们的研究中,研究人员产生了三种不同的脂肪酸并给它们贴上了标签。其中一个是11个,第二个是16个,第三个是18个碳原子长。"这些链长通常也会在食物中发现,"Thiele解释说。短脂肪酸被淘汰,长脂肪酸被"改进"标记使研究人员能够准确追踪不同长度的脂肪酸在细胞中发生的情况。这表明,由11个碳原子组成的脂肪酸最初被纳入甘油三酯中。然而,在很短的时间后,它们又被分离出来,并被输送到细胞外。两天后,它们不再能被检测到。这种较短的脂肪酸对细胞的利用率很低,甚至会损害它们,因此,它们很快就被处理掉了。相比之下,16原子和18原子的脂肪酸仍然留在细胞中,尽管不是在它们原来的脂肪分子中。它们也逐渐被化学改性,例如被插入额外的碳原子。在最初的脂肪酸中,碳原子更多的是以单键相连--大致上就像人的链条,邻居们手拉手。随着时间的推移,这有时会发展成双键--就像派对上的狂欢者在跳康加舞。在这个过程中形成的脂肪酸被称为不饱和脂肪酸。它们对身体来说是可以更好地利用的。Thiele强调说:"总的来说,通过这种方式,细胞产生的脂肪酸比我们最初用营养液提供的那些脂肪酸对机体更有益。从长远来看,这导致例如从棕榈酸形成油酸,这是高品质橄榄油的一个组成部分,例如棕榈脂肪中含有的油酸。然而,只要脂肪酸还在脂肪分子内,细胞就不能改变它们。它们必须首先被分离出来,然后被修改,最后再粘回去。没有甘油三酯的循环,也就没有脂肪酸的修改。因此,脂肪组织可以改善甘油三酯。如果我们吃下并储存了含有不利脂肪酸的食物,当我们饥饿时,它们就不必再以这种状态释放出来。我们拿回来的东西含有较少的"短"脂肪酸,更多的油酸(而不是棕榈酸),以及更多重要的花生四烯酸(而不是亚油酸)。"尽管如此,我们应该在饮食中注意尽可能多地摄入高质量的膳食脂肪,"该研究人员强调说。因为提炼从来没有百分之百的效果。此外,一些脂肪酸没有被储存,而是直接在体内使用。在下一步,研究人员现在想测试人类脂肪组织中发生的过程是否与试管中单个小鼠脂肪细胞中发生的过程相同。他们还想找出哪些酶使循环发挥作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1353121.htm手机版:https://m.cnbeta.com.tw/view/1353121.htm

封面图片

研究人员发现了脂肪细胞跟大脑直接对话的新方式

研究人员发现了脂肪细胞跟大脑直接对话的新方式由斯克里普斯研究所的一个团队领导的一项新研究发现了脂肪细胞和大脑之间的一种新型通信途径。研究结果显示,大脑并不只是通过缓慢响应血液中的荷尔蒙信号来调节脂肪燃烧,而是可以直接向脂肪组织发送信息并影响代谢过程。关于新陈代谢的传统观点认为身体使用各种信号分子如荷尔蒙来调节其能量生产。脂肪组织就像身体的能量储存系统,当我们在大量体力活动或压力大的时候需要利用这些供应来获得额外的燃料时,某些信号会触发交感神经系统开始与这些脂肪细胞对话。到目前为止,人们认为延伸到脂肪组织的神经大多跟这种交感神经系统的途径有关。但了解这种组织中到底有哪些类型的神经元一直是难以研究的。因此,为了获得这项研究的结果,研究小组需要开发全新的成像方法。在这项研究中,部署了两种新的方法:一种被称为HYBRiD,它使脂肪组织变得透明,让研究人员有了一个了解神经元路径的独特窗口;另一种方法被称为ROOT,它使研究人员能准确地研究位于脂肪组织中的某些神经元如何与身体的其他部分沟通。该研究的论文第一作者YuWang介绍称:“这项研究确实是通过这些新方法的结合而实现的。当我们刚开始这个项目时,还没有现成的工具来回答这些问题。”该研究的最大发现是发现了从脊柱分支到脂肪组织的感觉神经元。这些感觉神经元直接跟大脑中一个叫做背根神经节的部分进行交流。“这些神经元的发现首次表明,你的大脑正在积极地调查你的脂肪,而不仅仅是被动地接收关于它的信息,”共同资深作者LiYe说道,“这一发现的影响是深远的。”那么,从这些感觉神经元向大脑发送的是什么类型的信息?对此,研究人员阻断了这些感觉神经元的通讯并发现脂肪组织的代谢活动增加。当感觉神经元的通信被沉默时,交感神经系统启动了并开始将白色脂肪细胞转化为棕色脂肪。这一机制加强了身体的脂肪燃烧过程。研究人员推测,这两个对立的神经信号可能协同工作,以此来维持一种新陈代谢的平衡。交感神经系统将燃烧脂肪的过程打开,而感觉神经元通路则将这一过程关闭。“这告诉我们,大脑向脂肪组织发出的指令并不是一刀切的。它比这更细微,这两类神经元的作用就像燃烧脂肪的油门和刹车,”Li说道。基础性发现往往会导致一大堆需要进一步研究的新问题,而这项研究也不例外。这一发现在现阶段所能明确的是,新发现的感觉神经元通信途径对保持脂肪组织健康至关重要。但从那里开始,问题迅速开始堆积起来。如这些来自脂肪组织的感觉神经元信号如何跟交感神经系统信号进行机械性的互动?或者更有说服力的是,究竟什么样的信息是通过这些脂肪组织的感觉神经元进出大脑的?背根神经节的不同部分是否指导脂肪组织的不同代谢功能?最重要的是,这些途径能否被治疗性地调节,以治疗肥胖症或代谢性疾病?PC版:https://www.cnbeta.com/articles/soft/1311083.htm手机版:https://m.cnbeta.com/view/1311083.htm

封面图片

研究人员发现一种可以燃烧身体脂肪的分子

研究人员发现一种可以燃烧身体脂肪的分子通常情况下,脂肪细胞储存能量。然而能量在棕色脂肪细胞中会以热量的形式流失,并使得棕色脂肪成为生物加热器。因此,这种机制存在于大多数哺乳动物中。在人类中,棕色脂肪使婴儿保持温暖,而在成年人中,棕色脂肪的激活跟心肺代谢健康有利地相关。波恩大学药理学和毒理学研究所的AlexanderPfeifer教授表示,“然而,如今我们即使在冬天也很暖和。因此,我们身体本身的炉子几乎不再需要了。”我们的运动量也比我们的前辈少得多,同时消费的饮食越来越多,能量越来越高。棕色脂肪细胞被这三个因素所毒害。它们逐渐完全停止运作并消亡。另一方面,全球极度超重的人继续增加。Pfeifer说道:“因此,世界各地的研究小组正在寻找能够刺激棕色脂肪,从而增加脂肪燃烧的物质。”垂死的脂肪细胞促进其邻居的能量燃烧来自波恩大学的团队现在已经确定了一种能够燃烧脂肪的关键分子--名为肌苷。Pfeifer研究小组的BirteNiemann博士解说道:“众所周知,濒临死亡的细胞会释放混合的信使分子,从而影响其邻居的功能。我们想知道这种机制是否也存在于棕色脂肪中。”据悉,Niemann和她的同事SaskiaHaufs-Brusberg博士一起计划并进行了该研究的核心实验。因此,研究人员对遭受严重压力的棕色脂肪细胞进行了研究进而使这些细胞几乎处于死亡状态。“我们发现它们大量分泌嘌呤肌苷,”Niemann说道。然而更耐人寻味的是完整的棕色脂肪细胞对分子呼救的反应方式:它们被肌苷激活(或者仅仅是被其附近的死亡细胞激活)。肌苷因此扇动了它们体内的火炉。白色脂肪细胞也转化为它们的棕色兄弟姐妹。与此同时,被给予了高能量饮食和肌苷治疗的小鼠比对照组动物更瘦,另外还得到了免受糖尿病侵害的保护。在这种情况下,肌苷转运体似乎发挥了重要作用:细胞膜上的这种蛋白质将肌苷转移到细胞内,降低了细胞外水平。因此,肌苷失去了其促进燃烧的能力。该药物抑制了肌苷转运体Pfeifer表示:“一种药物实际上是为凝血障碍而开发的,但也能抑制肌苷转运体。我们给小鼠服用这种药物,结果,它们燃烧了更多的能量。”人类也有一个肌苷转运器。在百分之二到四的人中,由于基因变异,它的活性较低。“我们在莱比锡大学的同事已经对900人进行了基因分析,那些具有较不活跃的转运体的受试者平均来说明显更瘦,”Pfeifer指出。这些结果表明,肌苷也能调节人类棕色脂肪细胞的产热。因此,干扰该转运体活性的物质有可能适用于治疗肥胖症。已经被批准用于凝血功能障碍的药物可以作为一个起点。Pfeifer说道:“然而,需要在人体中进一步研究,以澄清这一机制的药理潜力。”另外,他也不认为仅靠药片就能解决世界上猖獗的肥胖症大流行问题。他强调道:“但目前现有的治疗方法还不够有效。因此,我们迫切需要药物来使肥胖患者的能量平衡正常化。”...PC版:https://www.cnbeta.com/articles/soft/1308995.htm手机版:https://m.cnbeta.com/view/1308995.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人