研究发现神经细胞对少量事物的理解能力优于大量事物

研究发现神经细胞对少量事物的理解能力优于大量事物想象一下,有人给我们看一张弦乐四重奏的照片,让我们说出照片上有多少人。虽然没有足够的时间来数,但我们都能脱口而出:"四个!"下一张照片显示的是一个七重奏,同样只给我们足够的时间快速看一眼。我们犹豫了一下,这次没有那么自信了:"八"正确的数字其实是七,但我们已经非常接近了。我们人类似乎有两种处理事物数量的独特方式:我们通常能够快速、正确地识别出少量的事物。这在研究领域也被称为"子化"。然而,当有五个或更多元素时,这种方法就会突然改变:我们需要越来越多的时间来回答,答案也变得越来越不精确。利用植入癫痫患者颞叶的超细电极,研究人员可以观察到不同脑区单个神经元的活动。图片来源:ChristianBurkert/大众基金会/波恩大学一些研究人员因此推测,大脑中有两种不同的处理方法--一种是处理小数字的精确方法,另一种是处理大数字事物的估算机制。波恩大学医院癫痫病学系的弗洛里安-莫尔曼(FlorianMormann)教授解释说:"然而,这一观点至今仍存在争议。也有可能是我们的大脑总是在进行估算,但对较小数量的事物的错误率非常低,以至于根本没有被注意到"。神经元对较小数量事物的选择性更强然而,最近的研究实际上表明,我们处理小数量和大数量事物的方式确实不同。参与该项目的研究小组几年前就已经证明,大脑中的神经细胞负责处理每种数量的事物。例如,有些神经元主要负责两个元素,有些负责四个元素,还有些负责七个元素。图宾根大学的安德烈亚斯-尼德教授解释说:"然而,神经元也会对数字的细微变化做出反应。因此,"七"元素的脑细胞也会对"六"和"八"元素产生反应,但反应更加微弱。同样的细胞仍会被激活,但对五或九个元素的激活就更弱了"。研究参与者在半秒钟内看到了屏幕上的一组点。短暂停顿后,他们必须指出数字是偶数还是奇数。如果点的数量少于5个,他们通常会毫不犹豫地给出正确答案。超过这个数字,反应时间和错误率都会逐渐增加。图片来源:AGMormann/波恩大学尼德尔已经能够在猴子实验中证明这种"数字距离效应"。这种效应似乎只出现在人数较多的人类身上。这位神经生物学家说:"对于少于五个元素的数字,似乎还有一种额外的机制,能让这些神经元更加精确。"神经生物学家说:"当代表三个数字的脑细胞发生反应时,它会同时抑制代表两个和四个数字的脑细胞。这就降低了这些细胞也会错误触发数字3的风险。然而,这种机制并不适用于为数字5、6或8而激活的神经元。这就是这些数字错误率较高的原因。"观察单个脑细胞的工作波恩大学医院的一个特色让研究人员在研究中受益匪浅:该医院的癫痫科专门从事脑外科手术。那里的医生试图通过手术切除病变的神经组织来治疗癫痫。为了确定致痫灶的位置,他们有时会首先将电极插入患者的大脑。17名患者参加了最新的研究。在准备手术时,他们将细如发丝的微电极插入颞叶。埃斯特-库特(EstherKutter)解释说:"我们可以用它们来测量单个神经细胞对视觉刺激的反应。"实验对象坐在电脑屏幕前,屏幕上出现不同数量的点,持续半秒钟。然后要求受试者说出他们看到的是偶数还是奇数的点。他们的反应非常迅速,在四个点之前几乎没有出错。之后,随着点数的增加,错误数量也在增加,参与者完成任务所需的思考时间也在增加。这项工作将为我们了解人脑如何处理数字提供新的视角。从长远来看,这些发现可能会让人们更好地理解计算障碍,这是一种与对数字理解不清有关的发育障碍。...PC版:https://www.cnbeta.com.tw/articles/soft/1387815.htm手机版:https://m.cnbeta.com.tw/view/1387815.htm

相关推荐

封面图片

新发现的生物标记物对神经元再生有预测能力

新发现的生物标记物对神经元再生有预测能力神经元是构成我们大脑和脊髓的主要细胞,是受伤后再生最慢的细胞之一,许多神经元无法完全再生。尽管科学家在理解神经元再生方面取得了进展,但仍不清楚为什么有些神经元能够再生而另一些神经元却不能。加州大学圣地亚哥分校医学院的研究人员利用单细胞RNA测序(一种确定单个细胞中哪些基因被激活的方法)发现了一种新的生物标记,可用于预测神经元在受伤后是否会再生。他们在小鼠身上测试了他们的发现,发现该生物标志物在整个神经系统和不同发育阶段的神经元中始终可靠。该研究于2023年10月16日发表在《Neuron》杂志上。“单细胞测序技术正在帮助我们比以往任何时候都更详细地了解神经元的生物学,这项研究确实证明了这种能力,”资深作者、神经科学系教授郑滨海博士说。加州大学圣地亚哥分校医学院。“我们在这里发现的可能只是基于单细胞数据的新一代复杂生物标记物的开始。”研究人员重点关注皮质脊髓束的神经元,这是中枢神经系统的关键部分,有助于控制运动。受伤后,这些神经元是最不可能再生轴突的神经元之一——轴突是神经元用来相互交流的又长又薄的结构。这就是为什么大脑和脊髓损伤如此具有破坏性。神经元(此处以红色和黄色显示)是受伤后再生最慢的细胞之一。在小鼠大脑的这一部分中,黄色神经元正在再生,而红色神经元则无法再生。图片来源:加州大学圣地亚哥分校健康科学第一作者HugoKim博士说:“如果你的手臂或腿部受伤,这些神经可以再生,并且通常可以完全恢复功能,但中枢神经系统的情况并非如此。大多数大脑和脊髓损伤很难恢复,因为这些细胞的再生能力非常有限。”识别生物标志物研究人员利用单细胞RNA测序来分析脊髓损伤小鼠神经元的基因表达。他们利用现有的分子技术鼓励这些神经元再生,但最终,这只对部分细胞有效。这种实验设置使研究人员能够比较再生和非再生神经元的测序数据。此外,通过关注相对较少的细胞(仅超过300个),研究人员能够非常仔细地观察每个细胞。“就像每个人都是不同的一样,每个细胞都有自己独特的生物学特性,”郑说。“探索细胞之间的微小差异可以告诉我们很多关于这些细胞如何工作的信息。”HugoKim博士(左)在郑滨海博士(右)的监督下设计并执行了单细胞RNA测序实验。图片来源:加州大学圣地亚哥分校健康科学研究人员使用计算机算法分析测序数据,确定了一种独特的基因表达模式,可以预测单个神经元在受伤后是否最终会再生。该模式还包括一些以前从未涉及神经元再生的基因。“这就像神经元再生的分子指纹,”郑补充道。验证再生分类器为了验证他们的发现,研究人员在26个已发表的单细胞RNA测序数据集上测试了这种分子指纹(他们将其命名为再生分类器)。这些数据集包括来自神经系统各个部分和不同发育阶段的神经元。研究小组发现,除了少数例外,再生分类器成功预测了单个神经元的再生潜力,并能够重现先前研究中的已知趋势,例如出生后神经元再生的急剧下降。“根据来自完全不同研究领域的多组数据验证结果告诉我们,我们已经发现了有关神经元再生的基础生物学的一些基本知识,”郑说。“我们需要做更多的工作来完善我们的方法,但我认为我们已经发现了一种对所有再生神经元都通用的模式。”虽然小鼠身上的结果很有希望,但研究人员提醒说,目前再生分类器是一种帮助实验室神经科学研究人员的工具,而不是诊所患者的诊断测试。“在临床环境中使用单细胞测序仍然存在很多障碍,例如成本高、分析大量数据困难,以及最重要的是,无法获取感兴趣的组织,”郑说。“目前,我们有兴趣探索如何在临床前环境中使用再生分类器来预测新再生疗法的有效性,并帮助这些疗法更接近临床试验。”...PC版:https://www.cnbeta.com.tw/articles/soft/1391581.htm手机版:https://m.cnbeta.com.tw/view/1391581.htm

封面图片

干细胞揭示了PTSD患者的神经元是如何对压力做出反应的

干细胞揭示了PTSD患者的神经元是如何对压力做出反应的该研究于10月20日发表在《NatureNeuroscienc》上,是首个使用诱导多能干细胞模型来研究创伤后应激障碍的研究。PTSD可在严重创伤后发展,对退伍军人和平民来说都是一个巨大的公共健康问题。根据美退伍军人事务部下属的国家创伤后应激障碍中心的数据,每100个美国人中约有6人在其生命中的某个阶段会有创伤后应激障碍。在美国,约有1200万成年人在某一年中患有PTSD。然而,遗传和环境因素对个人临床结果的贡献程度仍是未知的。为了填补这一信息空白,研究小组研究了从Bronx的JamesJPeters退伍军人事务医疗中心招募的39名患有和不患有PTSD的战斗退伍军人的群组。退伍军人进行了皮肤活检,他们的皮肤细胞被重新编程为诱导多能干细胞。伊坎西奈山精神病学和神经科学教授、JamesJPeters退伍军人事务医疗中心心理健康主任、论文资深作者RichaelYehuda博士说道:“将细胞重编程为诱导多能干细胞,就像把细胞带回它们还是胚胎的时候,并且有能力生成身体的所有细胞。然后这些细胞可以分化成跟该人的脑细胞在发生创伤前具有相同属性的神经元,从而来改变其功能方式。来自这些神经元的基因表达网络反映了由遗传和非常早期的发育贡献导致的早期基因活动,因此它们是‘战斗前’或‘创伤前’基因表达状态的反映。”研究人员KristenBrennand博士表示:“两个人可以经历同样的创伤,但他们不一定都会发展成创伤后应激障碍。在患有和不患有PTSD的人的脑细胞中进行这种类型的建模有助于解释遗传学如何使某人更容易受到创伤后应激障碍的影响。”据悉,Brennand是这项研究的共同领导者。为了模仿引发PTSD的压力反应,科学家们将诱导多能干细胞衍生的神经元暴露在压力激素氢化可的松中,这是人体自身皮质醇的合成版本,被用作“战斗或逃跑”反应的一部分。Yehuda博士表示:“向这些细胞添加应激激素模拟了战斗的生物效应,这使我们能够确定不同的基因网络是如何对脑细胞中的应激暴露做出反应的。”通过利用基因表达分析和成像,科学家们发现患有PTSD的人的神经元对这种药理学触发器过度敏感。另外,科学家们还能确定在暴露于压力荷尔蒙后反应不同的特定基因网络。受PTSD影响的人的细胞内部迄今为止,大多数关于PTSD的类似研究都使用了病人的血液样本。然而由于创伤后应激障碍扎根于大脑,科学家们需要一种方法来捕捉易受该障碍影响的个人的神经元如何受到压力的影响。因此,该团队选择使用干细胞,因为它们具有独特的条件,可以提供一个针对病人的、非侵入性的大脑窗口。Brennand博士说道:“你不能轻易地伸手到一个活人的大脑中拉出细胞,所以干细胞是我们检查神经元在病人身上如何表现的最好方法。”NYSCF科学家使用他们的可扩展、自动化、机器人系统--NYSCF全球干细胞阵列--创建干细胞,然后从PTSD患者身上提取谷氨酸神经元。谷氨酸神经元帮助大脑发送兴奋性信号,以前曾跟PTSD存有关联。“由于这是第一个使用干细胞模型研究PTSD的研究,所以研究大量的个体是很重要的,”共同领导这项研究的DanielPaull博士说道,“在这项研究的规模上,自动化是至关重要的。通过阵列,我们可以制作标准化的细胞,从而在众多个体之间进行有意义的比较,以指出可能对发现新疗法至关重要的关键差异。”利用受压PTSD细胞的特征进行新治疗研究小组的基因表达分析揭示了一组基因,这些基因在接触应激激素后在易受PTSD的神经元中特别活跃。“重要的是,我们在神经元中发现的基因特征在患有PTSD的死者的大脑样本中也很明显,这告诉我们,干细胞模型正在提供一个相当准确的反映在世病人大脑中发生的情况,”Paull博士说道。此外,PTSD和非PTSD细胞对压力的反应的区别,这可以为预测哪些人患PTSD的风险较高提供信息。Paull博士继续说道:“我们的发现真正令人兴奋的是它们为加速诊断和治疗创伤后应激障碍提供了机会。重要的是,拥有一个强大的干细胞模型,为‘菜’中的药物筛选提供了一个理想的途径,甚至跨越不同的病人群体。”“我们正在努力寻找已经被批准的药物,可以扭转我们在神经元中看到的超敏性,”Brennad博士补充道,“这样一来,我们发现的任何药物都将有最快的途径来帮助病人。”研究人员计划继续利用他们的诱导多能干细胞模型进一步研究这项研究指出的遗传风险因素,另外还将研究创伤后应激障碍如何影响其他类型的脑细胞从而帮助扩大治疗发现的机会。一项由团队科学促成的研究Brennad博士说道:“这项研究的特别之处在于,它只能由这个小组完成。它涉及到这个领域中一些最好的临床医生、令人难以置信的干细胞生物学家和令人惊叹的精神病学遗传学家。每个小组都有独特的专业知识,这些都不可能由任何一个小组单独完成。”“这项研究是团队科学力量的真正证明,”Paull博士补充道,“当研究人员联合起来时,我们能够提出更大的问题,做出更大的发现,并希望能够为患者带来更大的改变。”NYSCF临时CEODerrickRossi博士说道:“作为与世界级科学家合作的这一里程碑式研究的一部分,NYSCF从PTSD患者身上生成了有史以来第一个诱导多能干细胞模型,我们感到非常自豪。这项合作工作强调了干细胞模型在研究和揭开挑战性疾病方面的独特价值,以及发现可能导致急需治疗的创新策略。”...PC版:https://www.cnbeta.com.tw/articles/soft/1331363.htm手机版:https://m.cnbeta.com.tw/view/1331363.htm

封面图片

将大脑免疫细胞转化为神经元有助于中风后的康复

将大脑免疫细胞转化为神经元有助于中风后的康复中风或其他脑血管疾病导致脑部血流不畅后,神经元要么受损,要么死亡,造成特有的生理和心理缺陷。现在,日本九州大学的研究人员将大脑的主要免疫细胞小胶质细胞转化为神经元,从而恢复了受中风影响的小鼠的运动功能。该研究的通讯作者中岛健一说:"当我们被割伤或骨折时,我们的皮肤和骨骼细胞可以复制,从而治愈我们的身体。但我们大脑中的神经元却不容易再生,因此损伤往往是永久性的。因此,我们需要找到新的方法来安置失去的神经元。"研究人员从之前的研究中得知,在健康小鼠的大脑中,小胶质细胞可以被诱导发育成神经元。中风后,负责清除受损或死亡脑细胞的小胶质细胞向受伤部位移动并迅速复制。该研究的第一作者入江隆说:"小胶质细胞数量丰富,而且正好位于我们需要它们的地方,因此它们是理想的转化目标。"研究人员通过暂时阻断右侧大脑中动脉诱导小鼠中风,大脑中动脉是大脑中的主要血管,通常与人类中风有关。一周后,研究人员观察到小鼠的运动功能出现障碍,纹状体中的神经元明显减少,而纹状体是大脑中参与决策、行动规划和运动控制的区域。他们使用慢病毒--一种用作病毒载体的亚类逆转录病毒--将DNA插入中风损伤部位的小胶质细胞。DNA中含有产生NeuroD1的指令,NeuroD1是一种诱导神经元转换的蛋白质。在随后的几周里,这些细胞发育成了神经元。在小胶质细胞中产生NeuroD1蛋白可诱导它们发育成神经元(红色),减少神经元缺失区域(暗斑)。DNA植入三周后,小鼠的运动功能得到改善。到八周时,新诱导的神经元已成功融入大脑回路。当研究人员移除新神经元时,运动功能的改善消失了,这证实了新神经元对小鼠的康复做出了直接贡献。中岛说:"这些结果很有希望。下一步是测试NeuroD1是否也能有效地将人类小胶质细胞转化为神经元,并确认我们将基因插入小胶质细胞的方法是安全的。"由于小鼠是在中风后的急性期接受治疗的,此时小胶质细胞已经迁移到损伤部位,因此研究人员下一步计划观察他们是否能在后期阶段让小鼠产生康复效果。该研究发表在《美国国家科学院院刊》(PNAS)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391667.htm手机版:https://m.cnbeta.com.tw/view/1391667.htm

封面图片

研究发现肿瘤细胞对化疗的反应是由随机性驱动的

研究发现肿瘤细胞对化疗的反应是由随机性驱动的新的研究显示,来自神经母细胞瘤的肿瘤细胞--在身体的"战斗或逃跑"交感神经系统中发展的癌症--可以在对化疗有反应或无反应的状态之间移动。加文大学网络生物学实验室主任大卫-克劳奇(DavidCroucher)副教授说:"我们表明,在细胞死亡的过程中存在'噪音',这就是化疗治疗对癌细胞的影响--而基因表达系统中这种固有的噪音,或随机性,是化疗抵抗的一个重要方面。"而大约15%的神经母细胞瘤患者对化疗治疗没有反应。神经母细胞瘤细胞(青色)作为肿瘤生长,周围的胶原蛋白基质(品红色)。这些细胞表达了一种生物传感器(JNK-KTR),可以读出单细胞JNK活动对化疗治疗的反应。资料来源:MaxNobis/Garvan"我们的研究结果表明,遗传学并不能说明一切;其他层次的调节和肿瘤进展的其他机制也可以支撑药物反应,所以我们需要考虑它们,"该研究的共同第一作者SharissaLatham博士说。研究小组表明,一旦神经母细胞瘤细胞达到抵抗化疗的状态,它们就不能再回到之前,这表明有一个小窗口,在肿瘤细胞被锁定之前,治疗可以对其发挥作用。Croucher副教授说:"将化疗与针对肿瘤内这种噪音的药物相结合,作为诊断后的一线治疗,在肿瘤锁定为抵抗状态之前,可能会有最好的效果。这颠覆了癌症临床试验的典型方案,即对已经用尽所有其他治疗方案的患者进行新的治疗。"这项新研究发表在《科学进展》杂志上。神经母细胞瘤细胞(青色)作为肿瘤和周围的胶原蛋白基质(品红色)生长。这些细胞表达了一种生物传感器(JNK-KTR),可以读出单细胞JNK活动对化疗治疗的反应。资料来源:MaxNobis/Garvan研究人员使用数学模型缩小了神经母细胞瘤肿瘤中细胞死亡途径的"噪音"信号。然后,他们将其应用于患者的细胞样本,使用尖端的成像技术来观察单个细胞,以直观地分离出对治疗没有反应的细胞。他们发现了一个抗药性的标记--一组参与细胞死亡过程的蛋白质,即所谓的细胞凋亡。"我们想弄清楚这种随机性的基础是什么。关于这些细胞是什么,是否可以操纵任何东西来使它们做出反应,"Latham博士说。该团队确定了某些类别的批准药物,这些药物可能与化疗相结合,以稳定参与细胞死亡的基因的表达,或通过改变可能使肿瘤细胞进入抗性状态的先天阈值。下一步是开始将这项工作推进到临床试验。...PC版:https://www.cnbeta.com.tw/articles/soft/1347629.htm手机版:https://m.cnbeta.com.tw/view/1347629.htm

封面图片

研究人员在感知气味的神经元内发现了一种以前未知的细胞成分

研究人员在感知气味的神经元内发现了一种以前未知的细胞成分在电子显微镜放大镜下,带有转导蛋白的囊泡的释放分子生物学系教授斯塔凡-博姆(StaffanBohm)说:"找到治疗嗅觉受损的方法的前提是首先了解嗅觉如何工作。"研究人员所发现的是神经细胞内的一个所谓的细胞器,这在以前是没有被观察到的。新发现的细胞器被研究人员命名为"多泡转导体",这一发现要归功于于默奥大学独特的显微镜基础设施。DevendraKumarMaurya研究人员DevendraKumarMaurya使用了一种被称为相关显微镜的新技术,该技术结合了电子显微镜和共焦显微镜,这样就可以对细胞的内部结构和不同蛋白质的位置进行成像。细胞器是细胞内独特的"工作站",可与人体的不同器官相比较,即不同的细胞器在细胞内有不同的功能。大多数细胞器在不同的细胞类型中是通用的,但也有一些细胞器具有特定的功能,只出现在某些细胞类型中。嗅觉神经细胞有长长的突起,即纤毛,突入鼻腔,含有结合气味物质的蛋白质,从而启动神经脉冲到大脑。将气味转化为神经脉冲的过程被称为转导,新发现的细胞器只包含转导蛋白。斯塔凡-博姆,于默奥大学分子生物学系教授转导体的作用是既储存又保持转导蛋白相互分离,直到它们被需要。当嗅觉受到刺激时,该细胞器的外膜破裂,释放出转导蛋白,以便它们能够到达神经元的纤毛,从而感知到气味。研究人员还发现,转导体携带一种叫做视网膜色素变性2号的蛋白质,即RP2,它在其他方面被称为调节眼睛感光细胞的转导。如果RP2基因发生突变,就会导致眼睛疾病视网膜色素变性的一个变种,损害眼睛的光敏细胞。"需要进一步研究的一个问题是,转导体是否在视觉中发挥作用,以及它是否存在于由神经递质而非光和气味激活的大脑神经元中。如果是这样,这一发现可能会被证明更加重要,"斯塔凡-博姆说。当研究人员DevendraKumarMaurya使用一种叫做相关显微镜的新技术时,发现了转导体。该技术结合了电子显微镜和共焦显微镜,因此可以同时对细胞的内部结构和不同蛋白质的位置进行成像。对这一发现至关重要的是Devendra的方法开发,它使该技术能够被用于分析组织切片中的完整神经元。...PC版:https://www.cnbeta.com.tw/articles/soft/1343173.htm手机版:https://m.cnbeta.com.tw/view/1343173.htm

封面图片

研究发现提高帕金森病风险的基因突变也抑制了细胞的清理工作

研究发现提高帕金森病风险的基因突变也抑制了细胞的清理工作在被称为轴突的神经细胞部分的末端,有一个突触前终端。在这里,神经冲动被转化为神经递质,后者携带信号穿过两个神经元之间的突触,或一个神经元与一个肌肉细胞或腺体之间的突触。突触上密布着蛋白质,为发生在那里的新陈代谢活动提供能量。它们也是脆弱的结构。维持神经传递所需的代谢活动的强度会对细胞造成压力和损害。如果受损的细胞没有被称为自噬的过程所清除,就会导致细胞碎片的有毒堆积和神经元的死亡,这两种情况都出现在帕金森病中。澳大利亚昆士兰大学的一项新研究考察了自噬功能失调是如何导致神经元退化的。研究人员意识到,当细胞破裂时,它们会发出信号,产生一种叫做内皮素-A(EndoA)的蛋白质,开始清理大脑中的细胞碎片。昆士兰大脑研究所的AdekunleBademosi博士和该研究的主要作者说:"我们知道我们可以通过饿死细胞的氨基酸来诱导细胞自噬,随后的碎片分解告诉一种叫做EndoA的蛋白质接近细胞膜并开始回收过程。"他们的研究导致了一种基因突变的发现,这种基因突变与帕金森病风险的增加和大脑中细胞碎片的堆积有关。Bademosi说:"我们的团队已经发现,一个与帕金森病有关的突变在一个名为Endophilin-A1的基因中阻止了身体和大脑回收细胞废物的过程。不幸的是,当帕金森病患者的内皮素-A1基因受到影响时,蛋白质EndoA对突触处的这种触发因素变得不敏感,本应被扔出去回收的碎片反而堆积起来。"该研究的结果表明,应该放弃对帕金森病的传统治疗方法,而专注于解决可能成为该病症基础的细胞碎片堆积问题。"现在可能是时候将治疗重点转向自噬,作为这些疾病特征的基础机制。探索使用诱导或抑制自噬的化合物可能为新的、更有效的帕金森病药物铺平道路"。该研究发表在《神经元》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1346601.htm手机版:https://m.cnbeta.com.tw/view/1346601.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人