研究人员开发出对抗疟疾抗药性的新方法

研究人员开发出对抗疟疾抗药性的新方法疟疾仍然是全球最致命的传染病之一。抗药性疟原虫的出现要求我们不断开发新的药物。SvetlanaB.Tsogoeva教授领导的埃尔兰根-纽伦堡弗里德里希-亚历山大大学(Friedrich-Alexander-UniversitätErlangen-Nürnberg,FAU)的研究小组现已将抗疟疾药物青蒿素与香豆素(与青蒿素一样,香豆素也存在于植物中)结合在一起,并从这两种生物活性物质中开发出一种自发荧光化合物。这种自发荧光尤其具有优势,因为它可用于活细胞成像,并能以精确的时间顺序显示药物是如何起作用的。工作小组还发现,自发荧光的青蒿素-香豆素混合物能够消灭一种名为棕榈疟原虫的抗药性疟疾病原体。他们将研究结果发表在《化学科学》杂志上。青蒿素是从一种名为黄花蒿(ArtemisiaannuaL.)的植物中提取的一种高效、常用的疟疾药物成分。香豆素是一种次生植物化合物,存在于多种植物中。在开发抗疟疾药物的过程中,活性物质会被贴上荧光标签,以便利用成像技术,按照精确的时间顺序确定它们是如何对疟疾病原体发挥作用的。青蒿素已经使用了这种荧光标记。不过,使用荧光物质标记的一大缺点是会改变药物的作用方式。例如,这意味着在某些情况下,感染疟疾的细胞在荧光标记后对青蒿素等药物的吸收与之前不同。药物的溶解度也会发生变化。自发荧光混合物的开发避免了这一问题,这种混合物由两种或两种以上的基本化合物组成,本身具有荧光,其作用模式可通过成像技术精确观察。有机化学教席的Tsogoeva教授领导的团队决定将青蒿素与生物活性香豆素结合起来,因为香豆素衍生物也具有抗疟疾特性。香豆素衍生物还可以很容易地进行化学变化,使其具有极强的荧光性。研究人员发现,在感染了恶性疟原虫的活红细胞中,不仅可以观察到这种首创的自发荧光青蒿素-香豆素混合物的作用模式,而且还可以观察到青蒿素-香豆素混合物的生物活性。BarbaraKappes教授(巴西联邦大学化学与生物工程系)和DiogoR.M.Moreira博士(巴西巴伊亚州Fiocruz市GonçaloMoniz研究所)共同发现,这种活性制剂在体外(试管内)对恶性疟原虫菌株非常有效,而这些菌株对氯喹和其他疟疾药物具有抗药性。最重要的是,这种新化合物在小鼠模型体内对疟疾病原体也非常有效。随着首个自发荧光青蒿素-香豆素混合物的问世,FAU的研究人员希望他们已经为开发更多治疗疟疾的自发荧光药物奠定了基础,并在克服治疗疟疾的多重抗药性方面取得了重大进展。...PC版:https://www.cnbeta.com.tw/articles/soft/1398819.htm手机版:https://m.cnbeta.com.tw/view/1398819.htm

相关推荐

封面图片

研究人员发现克服抗菌素耐药性的新方法

研究人员发现克服抗菌素耐药性的新方法世界卫生组织已将抗菌素耐药性确定为全球关注的问题,因为大多数临床抗生素不再对某些致病菌有效。俄克拉荷马大学抗生素发现和耐药性中心由HelenZgurskaya博士和ValentinRybenkov博士领导,正在努力寻找替代治疗解决方案。抗生素通过靶向细菌细胞的特定部分(例如细胞壁或其DNA)发挥作用。细菌可以通过多种方式对抗生素产生耐药性,包括通过开发外排泵(位于细菌细胞表面的蛋白质)。当抗生素进入细胞时,外排泵在到达目标之前将其泵出细胞,这样抗生素就永远无法杀死细菌。然而,俄勒冈大学的研究人员最近在《自然通讯》杂志上发表了一项发现。科学家们发现了一类新的分子,可以抑制外排泵,使抗生素再次发挥作用。这些抑制剂具有新颖的作用机制,但直到最近仍不清楚。Zgurskaya的团队与佐治亚理工学院和英国伦敦国王学院的团队合作,发现这些抑制剂作为“分子楔子”,针对细胞内膜和外膜之间的区域,增强细菌的抗菌活性。了解这种机制可以促进抗生素临床应用新疗法的发现。“我们已经生活在后抗生素时代,除非在诊所找到新的抗生素耐药性解决方案,否则情况将会变得更糟。我们的发现将促进新疗法的开发,以帮助缓解迫在眉睫的危机。”Zgurskaya说。...PC版:https://www.cnbeta.com.tw/articles/soft/1388511.htm手机版:https://m.cnbeta.com.tw/view/1388511.htm

封面图片

耶鲁大学研究人员发现治疗癌症的新方法

耶鲁大学研究人员发现治疗癌症的新方法一项新的研究表明,带有额外染色体的癌细胞依靠这些额外染色体来生长肿瘤,而移除这些额外染色体可以阻止肿瘤的形成。这项研究为选择性地针对这些额外染色体治疗癌症开辟了一条潜在的新途径。"人体细胞通常有23对染色体;额外的染色体是一种异常,被称为非整倍体。"耶鲁大学医学院外科助理教授、该研究的资深作者杰森-谢尔特泽(JasonSheltzer)说:"以正常皮肤或正常肺组织为例,99.9%的细胞都有正确的染色体数目。但我们100多年前就知道,几乎所有癌症都是非整倍体。"然而,我们还不清楚多余的染色体在癌症中扮演什么角色--例如,它们是导致癌症还是由癌症引起的。"长期以来,我们可以观察到非整倍体,但无法对其进行操作。我们只是没有合适的工具,"身兼耶鲁大学癌症中心研究员的谢尔特泽说。"但在这项研究中,我们利用基因工程技术CRISPR开发出了一种新方法,可以消除癌细胞中的整条染色体,这是一项重要的技术进步。能够以这种方式操纵非整倍体染色体,将使我们对它们的功能有更深入的了解"。这项研究由实验室前成员VishruthGirish和AsadLakhani共同领导,VishruthGirish现在是约翰霍普金斯医学院的博士生,AsadLakhani现在是冷泉港实验室的博士后研究员。研究人员利用他们新开发的方法--他们称之为"利用CRISPR靶向技术恢复非整倍体细胞中的非整倍体"(RestoringDisomyinAneuploidcellsusingCRISPRTargeting),或称"ReDACT"--靶向黑色素瘤、胃癌和卵巢细胞系中的非整倍体。具体来说,他们切除了1号染色体长部分(也称为"q臂")的第三个异常拷贝,这种异常拷贝存在于几种癌症中,与疾病进展有关,并且发生在癌症发展的早期。当我们消除这些癌细胞基因组中的非整倍体时,就会削弱这些细胞的恶性潜能,使它们丧失形成肿瘤的能力。基于这一发现,研究人员提出癌细胞可能有"非整倍体"的偏好--这一名称参考了早先的研究,该研究发现消除癌基因(可将细胞转化为癌细胞)会破坏癌细胞形成肿瘤的能力。这一发现催生了一种被称为"癌基因成瘾"的癌症生长模型。在研究额外的1q染色体拷贝如何促进癌症时,研究人员发现,当多个基因过度表达时,它们会刺激癌细胞生长--因为它们在三条染色体上编码,而不是典型的两条染色体。某些基因的过量表达也让研究人员发现了一个漏洞,利用这个漏洞,他们可能会将目标锁定在非整倍体癌症上。以前的研究表明,1号染色体上编码的一个名为UCK2的基因是激活某些药物所必需的。在新的研究中,Sheltzer和他的同事发现,由于UCK2的过度表达,具有额外1号染色体拷贝的细胞比只有两个拷贝的细胞对这些药物更敏感。此外,他们还观察到,这种敏感性意味着药物可以改变细胞进化的方向,使其远离非整倍体,从而使细胞群体的染色体数目正常,因此癌变的可能性较小。当研究人员制造一种含有20%非整倍体细胞和80%正常细胞的混合物时,非整倍体细胞占据了上风:九天后,它们占到混合物的75%。但当研究人员将20%的非畸形细胞混合物暴露在一种依赖UCK2的药物中时,9天后,非畸形细胞只占混合物的4%。谢尔特泽说:"这告诉我们,非整倍体细胞有可能成为癌症的治疗靶点。几乎所有癌症都是非整倍体,因此,如果有办法选择性地靶向那些非整倍体细胞,那么从理论上讲,这可能是一种靶向癌症的好方法,同时对正常的非癌组织影响最小。"在这种方法进行临床试验之前,还需要进行更多的研究。但谢尔策的目标是将这项工作推进到动物模型中,评估更多的药物和其他非整倍体,并与制药公司合作推进临床试验。谢尔特泽说:"我们对临床转化非常感兴趣。因此我们正在考虑如何将我们的发现向治疗方向拓展。"...PC版:https://www.cnbeta.com.tw/articles/soft/1380265.htm手机版:https://m.cnbeta.com.tw/view/1380265.htm

封面图片

主要疟疾药物青蒿素类可能正在开始失效

主要疟疾药物青蒿素类可能正在开始失效在东非,疟原虫对青蒿素类药物产生了抗药性,而青蒿素类药物是目前治疗方案的支柱。如果今后伙伴药物失效,这一发展可能会大大加剧疟疾的影响。由法国斯特拉斯堡大学/巴斯德研究所的DidierMénard博士领导的研究小组,包括哥伦比亚大学微生物学家DavidFidock(戴维·费多克)博士(C.S.HamishYoung微生物学与免疫学教授、瓦格洛斯内外科医学院医学科学教授)组成的研究小组最近在《新英格兰医学杂志》上报告了在厄立特里亚的研究发现。疟疾的治疗依赖于青蒿素药物与抗疟药物的搭配。自2000年代初以来,这些药物组合一直是治疗非重症病例的高效疗法,通常在治疗三天后就能清除病人血液中的疟原虫。但恶性疟原虫正在产生抗药性,这有可能使2000年至2015年期间在抗击疟疾方面取得的进展出现倒退,当时非洲死于疟疾的人数下降了66%。2009年,东南亚首次出现了对青蒿素类药物的抗药性,随后不久又出现了对伙伴药物的抗药性。到2016年,东南亚部分地区的治疗失败率已达到85%。对青蒿素成分的抗药性是由恶性疟原虫基因Pfkelch13突变引起的。对于耐药性疟疾,在东南亚发生的情况往往会在非洲延迟十年才出现,这可能是因为耐药性寄生虫越境进入非洲,也可能是因为同样的耐药性机制需要更长的时间才能在高传播率的非洲环境中出现并确立自己的地位。超过95%的疟疾死亡病例发生在非洲,那里耐药性的增加令人震惊。新发现:非洲之角的抗药性在这项新研究中,梅纳德的研究小组和厄立特里亚卫生部的同事评估了2016年至2019年期间厄立特里亚近1000名患者接受青蒿素类复方疗法的疗效。研究人员发现,在此期间,药物疗法的有效性有所下降:2016年有0.4%的患者无法清除寄生虫,2019年上升到4.2%,超过了世界卫生组织宣布抗药性的门槛。到2019年,大约每五名患者中就有一人感染了耐青蒿素的Pfkelch13突变寄生虫。费多克领导的哥伦比亚研究小组随后用实验室培养的寄生虫进行了遗传实验,结果表明,在厄立特里亚发现的最常见的Pfkelch13突变是青蒿素抗药性的直接原因。现在的问题是,Pfkelch13的突变在整个非洲有多普遍。"我们看到的并不是最近才出现的新菌株。它只是花了这么长时间才被发现,"费多克说。"非洲中部和西部的疟疾发病率很高,但我们不知道那里发生了什么,需要进行更多的基因监测和疗效研究。寄生虫也学会逃脱检测研究发现,厄立特里亚的情况更加令人担忧,因为许多寄生虫都存在基因缺失,导致最常见的疟疾快速诊断检测无法检测到寄生虫。厄立特里亚约有17%的病人在使用这种检测方法时检测结果呈阴性,厄立特里亚已不再使用这种检测方法,但整个非洲都在普遍使用。这些检测阴性寄生虫的传播将严重阻碍正确诊断。费多克说:"这意味着,如果有人带着症状去诊所就诊,但疟疾检测结果呈阴性,他们就不会得到正确的治疗。他们的症状可能会恶化,也可能会死亡。由于青蒿素类药物只能用于治疗重症疟疾,必须通过静脉注射给药,因此这种风险变得更大。带有突变Pfkelch13基因的寄生虫可能不会很快被消灭,从而增加了致命的风险。该地区的临床医生需要注意,检测结果呈阴性的患者可能确实患有疟疾。为什么值得引起重视梅纳尔说:"不幸的是,我们的研究发现,抗药性已经在非洲之角站稳了脚跟,这使得接下来伙伴药物更有可能因为青蒿素无法消除抗药性而失效,疟疾病例和死亡人数可能会开始激增。"由于寄生虫尚未对青蒿素疗法中使用的伴侣药物产生抗药性,因此目前的情况还不至于造成灾难性后果。"但如果这些辅助药物失效,情况可能会迅速恶化,"菲多克说。"我们正在努力开发新药,但目前可供选择的药物非常有限。"...PC版:https://www.cnbeta.com.tw/articles/soft/1387113.htm手机版:https://m.cnbeta.com.tw/view/1387113.htm

封面图片

巧用生物钟的"时差" - 防治疟疾的新方法

巧用生物钟的"时差"-防治疟疾的新方法几乎所有的生物都拥有与生俱来的时钟,这些时钟管理着从食欲和激素浓度到全天基因活动时间的各种变化。在6月6日发表在《美国国家科学院院刊》上的一项研究中,研究人员分析了在泰国和柬埔寨边境的医疗机构出现的病人的基因活动,这些病人的血液中有疟疾感染的迹象。研究小组发现,疟疾寄生虫以某种方式将它们的分子节律与宿主的内部24小时时钟同步,它们各自的基因在一天内完美地相互上升和下降,就像两个同步摆动的钟摆。杜克大学、佛罗里达大西洋大学和武装部队医学研究所的研究小组说,这些发现可能为新的抗疟疾药物铺平道路,使疟疾的内部时钟与宿主脱节,本质上使寄生虫"时差"。高级作者、杜克大学生物学教授SteveHaase说:"我们有理由关心这个问题。"我们正在使用最后一线药物,即基于青蒿素的综合疗法,而且我们已经在东南亚看到了对这些药物的抗性。探索一些抗击疟疾的新思路是有意义的。"当一个人患有疟疾时,一个致命的循环在他们的身体内重复进行。这种疾病反复出现的发烧高峰是由微小的疟原虫引起的,它们侵入人的红血球,进行繁殖,然后齐刷刷地爆发出来,数以百万计地喷入血液中,侵入其他细胞,开始新的循环。这个循环每24、48或72小时重复一次,取决于疟原虫的种类。这让科学家们想知道:这些寄生虫会不会以某种方式与它们的宿主的24小时昼夜节律相协调?为了找到答案,研究人员收集了10名对间日疟引起的疟疾检测呈阳性的人的血液,间日疟是在亚洲和拉丁美洲发现的最主要的疟疾寄生虫品种。然后他们在两天内每三小时分析一次这些样本中的RNA,以弄清当寄生虫在受害者的红血球内成熟时,哪些基因是活跃的。利用一种叫做RNA测序的技术,研究小组追踪了病人的免疫细胞和潜伏在他们血液中的寄生虫中的1000多个基因的表达。研究人员发现有数百个基因遵循着类似时钟的节奏,在一天中的某些时间段会上升,在其他时间段则会关闭。利用这些数据,他们开发了一种方法来计算每个病人的内部时钟时间,也计算他们的寄生虫。然后他们计算了基因表达节奏的吻合程度。间日疟原虫有着每48小时重复一次的生命周期,寄生虫的时钟每转一圈,其宿主的24小时身体时钟就转两圈。研究小组发现,并不是每个病人的24小时内部时钟都按照完全相同的时间表运行。有些人的周期在一天中较早开始;有些则较晚。但是无论一个人的生物节律如何变化,他们的疟疾寄生虫中的循环基因都是一致的。研究人员已经知道,疟疾寄生虫有自己的内部计时机制。在2020年的一项研究中,Haase及其同事确定,即使在体外生长,没有像宿主的饮食或睡眠周期这样的线索来帮助它们确定时间,疟原虫仍然可以保持节拍。它们的节奏性要感谢一个内部节拍器,该节拍器自行运转,并使寄生虫的基因以固定的间隔上升和下降。但是新的研究显示了更多的东西。Haase说:"这些结果表明,寄生虫的时钟和宿主的时钟在相互交谈。"科学家们仍然不知道是什么促使疟疾寄生虫与宿主的节律相协调。Haase说:"寄生虫很可能是在利用其宿主的内部节律来达到自己的目的,但这种优势的性质还不清楚。"一种理论是,寄生虫安排它们从红血球中出现的时间,以避开受害者的免疫系统最活跃的时候,使自己不那么容易被攻击。"它们也可能在为它们的发育周期计时,以便它们有适当的营养。我们不知道。所以这是一个大问题。"美国已经有70多年没有出现过疟疾疫情了,但这种疾病仍然是世界上较贫穷和热带地区的一个主要死亡原因,仅在2021年就有61.9万人死亡,其中大部分是儿童。部分原因是疟疾有能力躲避攻击。治疗疟疾的药物已经存在了数百年,但现有武器库中的许多药物正在失去效力,因为世界上某些地区的寄生虫种群正在发展出绕过它们的方法。研究人员说,如果他们能够弄清楚疟疾寄生虫如何在人类中保持同步,就有可能开发出新的药物,使寄生虫的时钟与宿主的时钟脱钩,从而帮助免疫系统更好地对抗入侵者。其他宿主物种的研究结果也很有希望。在小鼠身上,节奏与宿主不同步的疟疾寄生虫传播感染的效果只有一半。作为下一步,研究人员正试图弄清楚寄生虫和人类的时钟是如何相互"沟通"的,以使它们的周期保持一致。哈斯说:"它们必须有一些分子信号来回传递给对方。我们不知道它们是什么,但如果我们能破坏它们,那么我们可能有机会进行干预。"...PC版:https://www.cnbeta.com.tw/articles/soft/1366103.htm手机版:https://m.cnbeta.com.tw/view/1366103.htm

封面图片

研究人员发现逆转芬太尼不良作用的新方法

研究人员发现逆转芬太尼不良作用的新方法据美国疾病控制中心(CentersforDiseaseControl)称,每年有10万美国人因用药过量而丧生,其中绝大多数是由于服用芬太尼等合成鸦片制剂所致。虽然纳洛酮是目前唯一能治疗阿片类药物过量的解毒剂,但它对芬太尼类合成阿片类药物的效果较差。印第安纳大学的研究人员发现了一种逆转芬太尼药效的新方法,芬太尼的药效比吗啡强50到100倍。他们的研究成果发表在《药物化学杂志》(JournalofMedicinalChemistry)上,可能会通过一种新产品或与纳洛酮(Naloxone)同步作用,找到一种逆转用药过量的新方法。吉尔生物分子科学中心(GillCenterforBiomolecularScience)高级研究科学家亚历克斯-斯特拉克(AlexStraiker)说:"合成阿片类药物与阿片受体结合得非常紧密。纳洛酮必须与阿片类药物竞争中枢神经系统中的相同结合位点,才能抵消药物过量。但在芬太尼过量时,纳洛酮和芬太尼会结合到不同的部位,这意味着不存在竞争。我们想看看负异位调节剂是否能逆转芬太尼的作用"。Straiker开始测量阿片受体对一种叫做cAMP的信号分子的影响。研究人员对50种结构相关的分子进行了化学测试,以确定哪些化合物最有希望成为有效的负异位调节剂。研究人员发现大麻二酚(或CBD)可以在结合位点上充当负异位调节剂。不过,在最初的测试中需要高浓度。研究人员修改了大麻二酚的结构,使其更加有效,并发现在体外诊断(在血液或组织样本上进行的测试)中,大麻二酚成功地逆转了芬太尼的作用。"我们已经确定了对预期解毒效果非常重要的结构部分,"斯特拉克说。"其中一些化合物比先导化合物更有效。我们已经与第三家实验室合作,对结合部位进行建模,这可能有助于确定更多的化合物。"下一步是在活体(即生物体)中测试他们的研究成果,以确定它是否能逆转呼吸抑制,而呼吸抑制是药物过量的主要影响。...PC版:https://www.cnbeta.com.tw/articles/soft/1387073.htm手机版:https://m.cnbeta.com.tw/view/1387073.htm

封面图片

研究人员发现一种治疗超级细菌感染的潜在新方法

研究人员发现一种治疗超级细菌感染的潜在新方法这项研究由高威大学的JamesPO'Gara教授和MerveSZeden博士领导,最近发表在mBio杂志上。微生物学教授JamesO'Gara说。"这一发现很重要,因为它揭示了用青霉素类药物治疗MRSA感染的潜在新方法,而青霉素类药物仍然是最安全和最有效的抗生素。"照片显示MRSA生长在两个琼脂平板的表面,一个没有鸟苷(左),一个有鸟苷(右),在这些平板上浸泡了抗生素。抗生素盘周围的清除区表明MRSA被杀死。资料来源:高威大学抗生素耐药性(AMR)危机是对人类健康的最大威胁之一,像MRSA这样的超级细菌给全球医疗资源带来了巨大负担。高威大学的微生物学研究小组表明,当青霉素类抗生素与作为DNA构建块的嘌呤结合时,MRSA可以被更有效地被杀灭。高威大学的博士生AaronNolan和高威大学生物和化学科学学院的MerveSZeden博士资料来源:戈尔韦大学Zeden博士说:"嘌呤核苷、腺苷、黄嘌呤和鸟苷是糖版的DNA构件,我们的工作表明,它们干扰了细菌细胞中的信号系统,而这些信号系统是抗生素抗性所必需的。"由嘌呤衍生的药物已经被用于治疗一些病毒感染和应对癌症。亚伦-诺兰是高威大学的博士生,是该论文的共同第一作者。他说。"寻找使超级细菌对目前许可的抗生素重新敏感的新方法是解决AMR危机的努力的一个关键部分。我们的研究表明,嘌呤核苷有可能使MRSA对青霉素类抗生素重新敏感"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343921.htm手机版:https://m.cnbeta.com.tw/view/1343921.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人