里程碑式的发现揭开晶体形成背后的秘密

里程碑式的发现揭开晶体形成背后的秘密 时至今日,人类对水晶魔力的痴迷依然充斥着科学家们的头脑,他们开发出了各种方法将水晶用于治疗疟疾、太阳能电池、半导体、催化剂和光学元件等各个方面。多年来,晶体已成为现代文明技术的重要组成部分。休斯顿大学弗兰克-沃利(Frank Worley)化学与生物分子工程学教授彼得-维基洛夫(Peter Vekilov)发表论文称,分子与晶体的结合分为两个步骤,中间还存在一个中间状态。资料来源:休斯顿大学因此,对于历史学家来说,如果要制作一个跨越一百万年的晶体魅力和研究时间表,那么休斯顿大学化学和生物分子工程系弗兰克-沃利(Frank Worley)教授彼得-维基洛夫(PeterVekilov)在《美国国家科学院院刊》(PNAS)上发表文章,解答晶体是如何形成以及分子是如何成为晶体的一部分的时间,就是 2024 年 1 月。维基洛夫说:"几十年来,晶体生长研究人员一直梦想着阐明进入的分子与晶体表面接受它们的独特位点扭结之间的化学反应。这种反应的机理,即特征时间尺度和长度尺度、可能的中间产物及其稳定性,60 多年来一直是难以捉摸和猜测的"。加深理解的主要障碍是缺乏有关分子如何加入的数据,以及分子从溶液到其生长地的复杂过程。Vekilov 使用 NanoRacer(使用原子力显微镜)高速扫描样品,获得晶体分子结构的重要信息。资料来源:休斯顿大学为了揭示溶解在液体中的分子(溶质)与扭结之间的化学反应,Vekilov 采用了两种转化策略,一种是使用全有机对,另一种是使用四种具有不同结构和功能的溶剂。在研究分子时,他结合了最先进的实验技术,包括近分子分辨率的时间分辨原位原子力显微镜、X 射线衍射、吸收光谱和扫描电子显微镜。就在那时,维基洛夫有了一个革命性的发现:结晶的结合可能分为两个步骤,中间有一个中间状态,这个中间状态的稳定性是晶体生长的关键。它基本上决定了晶体形成的快慢,因为它影响到晶体在形成过程中能否轻易地与其他物质结合。虽然这些新发现并不能追溯到智人时代,但它们为维基洛夫解开了一个长达 40 年的谜题。维基洛夫手持磷酸二氢钾(KDP)晶体。图片来源:休斯顿大学他说:"中间态的概念及其在晶体生长中的决定性作用,驳斥并取代了我的博士生导师 A.A. Chernov 在该领域提出的主流观点,即晶体生长的激活障碍由溶液体中溶质与溶剂的相互作用决定。"由中间状态介导的两步掺入新模式有助于理解液体中的小分子如何影响自然界中晶体的详细形状。同样重要的是,这一范例将指导人们寻找能稳定中间状态的溶剂和添加剂,以减缓不希望出现的多晶体等的生长。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

【豆瓣9.4 军事 套装】《战争艺术史(全4卷)》破解2300年世界历史演变秘密的里程碑式巨作,囊括人类政治、社会、军事、战略、

【豆瓣9.4 军事 套装】《战争艺术史(全4卷)》破解2300年世界历史演变秘密的里程碑式巨作,囊括人类政治、社会、军事、战略、战术的知识宝库。真正看懂现代世界格局绕不开的重磅经典,对发生在西方世界两千三百年间的几乎所有战争进行了辨析,以严谨的科学精神力图还原其真实场景和完整逻辑。作者德尔布吕克秉承了克劳塞维茨的战略思维,将战争与其背后的政治动因密切结合,将战争放在国家战略的高度进行考量,否认了那一时代普遍流行的对战略的狭隘理解,并对如何走出修昔底德陷阱这个世纪之问给出了富有智慧的见解。不同于庸俗的技术决定论,德尔布吕克更关注战争中的偶然性以及人对偶然性的驾驭,运用多个案例体现出人的思考力、意志力对战局的引领作用。https://www.amazon.cn/dp/B09DSPKJVM

封面图片

欧盟国家和欧盟立法者周四就限制科技巨头的里程碑式规则《数字市场法案》达成了协议。

欧盟国家和欧盟立法者周四就限制科技巨头的里程碑式规则《数字市场法案》达成了协议。 《数字市场法案》为控制数据和平台访问的门户网络公司制定了规则。它将涵盖在线中介服务、社交网络、搜索引擎、操作系统、在线广告服务、云计算、视频分享服务、网络浏览器和虚拟助理的门户企业。根据《数字市场法案》的规则,科技巨头将必须使他们的信息服务具有互操作性,允许企业用户访问数据。在平台上,企业用户能够推广与该平台竞争的产品和服务,也可以与平台外的客户达成交易。这些规则禁止科技公司偏袒自有服务和压制竞争对手,或阻止用户删除预装软件或应用程序。 《数字市场法案》将适用于市值达到750亿欧元、年营收达75亿欧元而且月度用户至少4500万的公司。违规公司将面临高达其全球年营收10%的罚款,如果再犯则提高至20%。Alphabet旗下谷歌、亚马逊、苹果、Meta和微软可能不得不改变它们在欧洲的核心商业行为。 目前担任欧盟轮值主席国的法国在一条推特上说,八个小时的会谈后达成了临时协议。欧盟内部市场与服务执委蒂埃里·布雷东在推文中说,该协议将确保数字市场的公平和开放。欧盟竞争事务执委维斯塔格在声明中说:“我们想要的很简单:数字市场也要公平。大型门户平台阻碍了企业和消费者从竞争性数字市场中获益。”牵头此次磋商的欧洲议会议员安德烈亚斯·施瓦布表示:“这意味着,在漫长的反垄断案件调查中行政当局落后于大型科技公司的时代已经过去了。” (路透社)

封面图片

北大美女博士开发全新晶体管 性能媲美商用高端芯片 登Nature顶刊

北大美女博士开发全新晶体管 性能媲美商用高端芯片 登Nature顶刊 发表在Nature上的这篇论文(Nature, 2023, 616: 66–72),内容是关于晶体管的。北京大学介绍称,为解决我国高端芯片的“卡脖子”问题尽一份力,于梦诗在博士攻读期间选择了二维半导体材料的可控制备作为主攻方向。化学专业的她,自学了固体物理、半导体器件物理等基础知识,打下了坚实的理论基础。首例外延高κ栅介质集成型二维鳍式晶体管(2D Bi2O2Se/Bi2SeO5 FinFET)在导师彭海琳教授的指导下,她与团队开发了全新的二维鳍式晶体管构筑方法,实现了世界首例二维半导体鳍片/高κ栅氧化物异质结阵列的外延生长及其三维架构的集成制备。并研制了高性能二维鳍式场效应晶体管(2D FinFET),性能可比拟商用高端芯片。这一研究成果在国际顶级期刊Nature上发表。据介绍,这一原创性工作突破了后摩尔时代高速低功耗芯片的二维新材料精准合成与新架构集成瓶颈,为开发未来先进芯片技术带来了新的机遇,被评选为2023年度“中国半导体十大研究进展”。在保研北大之前,于梦诗本科就读于南京理工大学2015级高分子材料与工程专业。本科期间就以第一作者发表7篇SCI论文,其中1篇进入ESI全球前1%的高被引论文,总影响因子达27.12,达到学校博士生毕业要求。 ... PC版: 手机版:

封面图片

科学家揭开复发性尿路感染持续疼痛背后的秘密:神经过度生长

科学家揭开复发性尿路感染持续疼痛背后的秘密:神经过度生长 对于尿路感染(UTI)反复发作的患者来说,一个令人困惑的问题是,即使抗生素已经成功清除了细菌,疼痛仍然持续存在。一项研究揭示,膀胱神经细胞过度生长是导致复发性尿道炎患者持续疼痛的原因,从而为更有效的新治疗方法指明了方向。现在,杜克大学的研究人员已经找到了可能的原因膀胱中神经细胞的过度生长。这一发现发表在3月1日出版的《科学免疫学》(Science Immunology)杂志上,它为治疗反复发作的尿毒症症状提供了一种潜在的新方法,能更有效地解决这一问题并减少不必要的抗生素使用。杜克大学医学院病理学系、分子遗传学与微生物学系、综合免疫生物学系和细胞生物学系教授、资深作者索曼-亚伯拉罕博士说:"尿路感染几乎占女性感染的25%。许多UTI都是复发性的,患者经常抱怨慢性盆腔疼痛和尿频,即使在使用一轮抗生素后也是如此。我们的研究首次描述了根本原因,并确定了一种潜在的新治疗策略。"亚伯拉罕及其同事收集了复发性尿道炎患者的膀胱活检样本,这些患者尽管尿液中没有可培养的细菌,但仍有疼痛感。通过对未患尿道炎的人的活检结果进行对比,他们发现有证据表明,尿道炎患者的感觉神经被高度激活,从而解释了持续疼痛感和尿频的原因。在小鼠身上进行的进一步研究揭示了潜在的事件,膀胱中的独特条件促使内膜中的活化神经在每次感染时都会生长。新的治疗策略该研究的第一作者、杜克大学病理学系博士后拜伦-海耶斯(Byron Hayes)说:"通常情况下,在每一次UTI发作期间,带有细菌的上皮细胞都会脱落,附近的神经组织也会遭到严重破坏。这些事件触发了受损膀胱的快速修复程序,其中包括被破坏神经细胞的大量再生。"这种免疫反应(包括修复活动)是由肥大细胞主导的,肥大细胞是一种免疫细胞,能对抗感染和过敏原。肥大细胞会释放称为神经生长因子的化学物质,促使神经过度生长并增加神经的敏感性。结果就是疼痛和紧迫感。研究人员用抑制肥大细胞产生的神经生长因子的分子来治疗小鼠,从而解决了这些症状。亚伯拉罕说:"这项工作有助于揭示一种令人费解的临床病症,这种病症会增加医疗成本,影响数百万人(主要是妇女)的生活质量。了解肥大细胞和神经之间的相互影响是有效治疗反复尿路感染患者的关键一步。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

揭开猴痘病毒的秘密:A10在其中的关键作用

揭开猴痘病毒的秘密:A10在其中的关键作用 痘病毒核心蛋白 A10 的结构。三聚体的三个亚基(颜色不同)表示为模拟低温电子显微镜表面。每个亚基的低温电子显微镜表面越来越清晰可见。图片来源:© Jesse Hansen这些研究成果发表在《自然-结构与分子生物学》(Nature Structural & Molecular Biology)杂志上,有助于未来针对痘病毒核心的治疗研究。天花病毒是最臭名昭著的痘病毒,也是危害人类最致命的病毒之一,它因引发天花而造成严重破坏,直到 1980 年才被根除。之所以能成功根除,得益于使用另一种牛痘病毒开展的广泛疫苗接种活动。2022-2023 年猴痘病毒的再次出现和爆发再次提醒我们,病毒总会想方设法重返公共卫生威胁的前沿。重要的是,这凸显了有关痘病毒的基本问题,而这些问题至今仍未得到解答。其中一个根本性的问题正是问题的核心所在:"我们知道,痘病毒要具有感染性,其病毒核心必须正确形成。但这个痘病毒核心是由什么组成的,它的各个组成部分又是如何结合在一起并发挥作用的呢?"该研究的通讯作者、国际科学与技术协会助理教授弗洛里安-舒尔问道。舒尔和他的团队现在找到了缺失的环节:一种名为 A10 的蛋白质。有趣的是,A10 是所有临床相关痘病毒的共同蛋白。此外,研究人员还发现,A10 是痘病毒核心的主要组成部分之一。这些知识有助于今后针对痘病毒核心的疗法研究。整个 Vaccinia 病毒的冷冻电子断层扫描图。病毒和核心的侧视图。核心内壁呈粉红色,病毒 DNA 呈绿色。图片来源:© Julia Datler病毒核心是所有传染性痘病毒共有的因子之一。"该研究的共同第一作者之一、国际科学与技术学院博士生朱莉娅-达特勒(Julia Datler)说:"以前的病毒学、生物化学和遗传学实验提出了痘病毒的几种候选核心蛋白,但没有实验得出的结构。"因此,研究小组首先利用现在著名的基于人工智能的分子建模工具 AlphaFold 对主要候选核心蛋白质模型进行了计算预测。与此同时,Datler 利用她的病毒学背景和舒尔小组的主要专业技术:低温电子显微镜(简称低温电子显微镜),为项目奠定了生化和结构基础。整个 Vaccinia 病毒的冷冻电子断层扫描图。病毒和核心的俯视图。核心内壁呈粉红色,病毒 DNA 呈绿色。图片来源:© Julia Datler"我们将当今最先进的低温电子显微镜技术与 AlphaFold 分子建模技术相结合。这让我们第一次看到了痘病毒核心的详细全貌病毒内部的'保险箱'或'生物反应器',它包裹着病毒基因组,并将其释放到受感染的细胞中,"Schur 说。这项研究的共同第一作者、博士后杰西-汉森(Jesse Hansen)说:"这有点像一场赌博,但我们最终还是找到了研究这一复杂问题的正确技术组合。"ISTA 助理教授 Florian Schur(左)与共同第一作者 Julia Datler 和 Jesse Hansen。图片来源:© ISTA国际科学与技术协会的研究人员从各种可能的角度,对"活"的 Vaccinia 病毒成熟病毒和纯化的痘病毒核心进行了研究。Datler说:"我们将'经典'的单粒子低温电子显微镜、低温电子断层扫描、子图平均和AlphaFold分析结合起来,获得了痘病毒核心的整体视图。利用低温电子断层扫描技术,研究人员可以在逐渐倾斜样本的同时获取图像,从而重建与整个病毒一样大的生物样本的三维体积。""这就像是对病毒进行 CT 扫描。低温电子断层扫描是我们实验室的'专长',它使我们能够获得整个病毒、病毒核心和内部的纳米级分辨率。"此外,研究人员还能将 AlphaFold 模型像拼图一样拼入观察到的形状中,并确定构成痘病毒核心的分子。其中,候选核心蛋白 A10 脱颖而出,成为主要成分之一。Datler说:"我们发现,A10定义了痘病毒核心的关键结构元素。"这些发现是解读过去几十年中产生的结构和病毒学数据的重要资源。研究报告的作者在 ISTA。从左至右Florian Schur、Victor-Valentin Hodirnau、Lukas Bauer、Julia Datler、Jesse Hansen、Andreas Thader、Alois Schlögl。图片来源:© ISTA获得这些发现的道路并不平坦。"我们需要从一开始就找到自己的道路,"Datler 说。Datler 利用她在生物化学、病毒学和结构生物学方面的专业知识,分离、繁殖和纯化了 Vaccinia 病毒样本,并制定了纯化完整病毒核心的方案,同时优化了这些样本的结构研究。"从结构上讲,研究这些病毒核心极其困难。但幸运的是,我们的毅力和乐观精神得到了回报。"ISTA 的研究人员坚信,他们的发现可以为未来针对痘病毒核心的疗法提供一个知识平台。"例如,我们可以考虑使用药物来阻止病毒核心组装,甚至在感染过程中分解和释放病毒DNA。"舒尔总结说:"归根结底,这里所做的病毒基础研究能让我们更好地应对未来可能爆发的病毒。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

解码小鼠的思维:索尔克研究所具有里程碑意义的表观基因组大脑图谱

解码小鼠的思维:索尔克研究所具有里程碑意义的表观基因组大脑图谱 这些工作由美国国立卫生研究院的"通过推进创新神经技术进行大脑研究计划"(BRAINInitiative)负责协调,该计划的最终目标是为哺乳动物的大脑绘制一幅全新的动态图像。索尔克教授、遗传学国际理事会主席、霍华德-休斯医学研究所研究员约瑟夫-埃克(Joseph Ecker)说:"通过这项工作,我们不仅获得了关于哪些细胞构成了小鼠大脑的大量信息,还了解了这些细胞内的基因是如何被调控的,以及这些基因是如何驱动细胞功能的。当利用这个基于表观基因组的细胞图谱,开始研究已知会导致人类疾病的基因变异时,就会对哪些细胞类型在疾病中可能最脆弱有了新的认识"。美国国立卫生研究院大脑计划于 2014 年启动,已为研究人员提供了 30 多亿美元的资金,用于开发变革性技术并将其应用于脑科学。2021年,得到"脑神经启示录计划"(BRAIN Initiative)支持的研究人员包括索尔克(Salk)的团队公布了小鼠大脑图谱的初稿,该图谱开创了描述神经元特征的新工具,并将这些工具应用于小鼠大脑的小切片。今年早些时候,许多相同的技术被用于绘制最初的人脑图谱。在最新的工作中,研究人员扩大了研究细胞的数量和小鼠大脑的区域,并使用了过去几年才出现的新的单细胞技术。左上图:解剖小鼠大脑的三维效果图,根据解剖的脑区划分为不同的部分;左下图:小鼠大脑的三维效果图,根据解剖的脑区划分为不同颜色的部分(黄色、蓝色、水蓝色、绿色、粉色、橙色、棕色、红色)。右上角:小鼠大脑的垂直切片,不同颜色(橙色、绿色、蓝色、水蓝色、红色、紫色)代表不同细胞类型,代表特定细胞类型在该切片中的空间位置;右下角:小鼠大脑的垂直切片,不同颜色(橙色、绿色、蓝色、水蓝色、红色、紫色)代表不同细胞类型,代表特定细胞类型在该切片中的空间位置:多色圆圈(黄色、蓝色、水蓝色、绿色、粉红色、橙色、棕色、红色)代表根据表观基因组剖析在小鼠整个大脑中发现的细胞类型的数量和多样性。资料来源:索尔克研究所全脑分析和公众可及性两篇新论文的资深作者爱德华-卡拉韦教授说:"这是整个大脑的研究,以前从未有过。观察整个大脑会产生一些想法和原理,而这些想法和原理是你每次观察一个部分所无法了解的"。为了帮助其他研究小鼠大脑的研究人员,新数据通过一个在线平台公开发布,不仅可以通过数据库进行搜索,还可以使用人工智能工具 ChatGPT 进行查询。索尔克研究教授玛格丽塔-贝伦斯(Margarita Behrens)补充说:"将小鼠作为模式生物的人非常多,这为他们在涉及小鼠大脑的研究中提供了一个非常强大的新工具。"这期《自然》特刊共刊登了 10 篇美国国立卫生研究院大脑计划(NIH BRAIN Initiative)的文章,其中 4 篇由索尔克研究人员合著,描述了小鼠大脑的细胞及其连接。这四篇论文中的亮点包括单细胞 DNA 甲基化图谱为了确定小鼠大脑中的所有细胞类型,索尔克研究人员采用了一次分析一个脑细胞的尖端技术。这些单细胞方法既研究细胞内DNA的三维结构,也研究DNA上附着的甲基化学基团的模式这是基因受细胞控制的两种不同方式。2019年,埃克的实验室小组开创了同时进行这两项测量的方法,这让研究人员不仅能研究出不同细胞类型中哪些基因程序被激活,还能研究出这些程序是如何开启和关闭的。研究小组发现了基因在不同细胞类型中通过不同方式被激活的例子,就像用两个不同的开关打开或关闭电灯一样。了解了这些重叠的分子回路,研究人员就能更容易地开发出干预脑部疾病的新方法。埃克实验室的博士后研究员、本文第一作者刘汉清说:"如果你能了解这些细胞类型中所有重要的调控元素,你也就能开始了解细胞的发育轨迹,这对了解自闭症和精神分裂症等神经发育疾病至关重要。"研究人员还对大脑的哪些区域含有哪些细胞类型有了新的发现。在对这些细胞类型进行编目时,他们还发现脑干和中脑的细胞类型远远多于大得多的大脑皮层这表明大脑的这些较小部分可能进化出了更多的功能。单细胞染色质图另一种间接确定DNA结构以及细胞正在积极利用哪段遗传物质的方法是测试哪些DNA可以被其他分子结合。加州大学圣地亚哥分校的任兵(Bing Ren)领导的研究人员(包括索尔克的埃克和贝伦斯)利用这种称为染色质可及性的方法,绘制了来自117只小鼠的230万个脑细胞的DNA结构图。然后,研究小组利用人工智能,根据这些染色质可及性模式,预测DNA的哪些部分是细胞状态的总体调控因子。他们发现的许多调控元件都位于DNA片段中,而这些DNA片段已经与人类脑部疾病有牵连;关于哪些细胞类型使用哪些调控元件的新知识有助于确定哪些细胞与哪些疾病有牵连。神经元投射和连接在贝伦斯、卡拉韦和埃克共同撰写的另一篇论文中,研究人员绘制了整个小鼠大脑神经元之间的连接图。然后,他们分析了这些图谱与细胞内甲基化模式的对比。这让他们发现了哪些基因负责引导神经元到达大脑的哪些区域。埃克实验室的博士后研究员、该论文的共同第一作者周景天(音译)说:"我们发现了某些规则,这些规则根据细胞的DNA甲基化模式决定细胞投射到哪里。"神经元之间的连接对其功能至关重要,而这套新规则可能有助于研究人员研究疾病中出现问题的原因。比较小鼠、猴子和人类的运动皮层运动皮层是哺乳动物大脑中参与计划和执行自主肢体运动的部分。贝伦斯、埃克和任领导的研究人员研究了来自人类、小鼠和非人灵长类运动皮层的 20 多万个细胞的甲基化模式和 DNA 结构,以更好地了解运动皮层细胞在人类进化过程中的变化。他们能够确定特定调控蛋白的进化与基因表达模式进化之间的相关性。他们还发现,近 80% 的人类特有的调控元件是可转座元件DNA 的移动小段,可以很容易地改变在基因组中的位置。"我认为,总的来说,这一整套研究为其他人未来的研究提供了蓝图,"索尔克分子神经生物学文森特-科茨讲座教授卡拉韦说。"研究特定细胞类型的人现在可以查看我们的数据,了解这些细胞的所有连接方式以及它们的所有调控方式。这是一种资源,可以让人们提出自己的问题"。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人