《22.八大细胞技术实验视频高清教程(分离-培养-传代-冻存-复苏-转染-划痕-侵袭)》

《22.八大细胞技术实验视频高清教程(分离-培养-传代-冻存-复苏-转染-划痕-侵袭)》 简介:一套关于八大细胞技术实验的高清教程视频,详细讲解从细胞分离到侵袭等一系列实验步骤,为科研人员和生物学爱好者提供专业学习资料 标签: #细胞技术教程 #科研视频 #生物学实验 #细胞实验指南 文件大小 NG 链接:

相关推荐

封面图片

科学家用最先进的成像技术揭开细胞结构的神秘面纱

科学家用最先进的成像技术揭开细胞结构的神秘面纱 沿纵轴切开并从上方观察的人类中心粒模型。图片来源:© CentrioleLab这种细胞器对细胞骨架的组织至关重要,在功能障碍的情况下与某些癌症、脑部疾病或视网膜疾病有关。这项发表在《细胞》(Cell)杂志上 的研究成果阐明了中心粒组装的复杂性。它还为研究其他细胞器开辟了许多新途径。细胞器的形成是按照连续的蛋白质招募事件的精确序列进行的。通过实时观察这种组装过程,可以更好地了解这些蛋白质在细胞器结构或功能中的作用。然而,要获得具有足够分辨率的视频序列来分辨如此复杂的显微元件,却面临着许多技术限制。为更好地观察细胞而充气中心粒尤其如此,这个尺寸不到 500 纳米(千分之五毫米)的细胞器由大约 100 种不同的蛋白质组成,分为六个亚结构域。直到几年前,人们还无法看到中心粒结构的细节。联合国大学理学院分子和细胞生物学系联合研究主任保罗-吉夏尔(Paul Guichard)和维吉妮-哈梅尔(Virginie Hamel)的实验室利用膨胀显微镜技术改变了这一局面。这项尖端技术可以使细胞及其成分在不变形的情况下逐渐膨胀,这样就可以使用传统显微镜以极高的分辨率对它们进行观察。以如此高的分辨率获取中心粒图像可以确定蛋白质在特定时间的确切位置,但却无法提供关于亚结构域或单个蛋白质出现顺序的信息。该研究的第一作者、前联合国工程师学会研究和教学人员 Marine Laporte 利用膨胀显微镜分析了一千多个中心粒在不同生长阶段的六个结构域中 24 种蛋白质的位置。重组图片,让它们运转起来"在这项非常繁琐的工作之后,我们进行了伪时间运动学重建。换句话说,我们能够将中心粒生物发生过程中随机拍摄的数千张图像按时间顺序排列起来,利用我们开发的计算机分析方法重建中心粒亚结构形成的各个阶段,"这项研究的共同负责人维吉妮-哈梅尔解释说。这种独特的方法结合了极高分辨率的膨胀显微镜和运动学重建,使我们能够首次建立人类中心粒的 4D 组装模型。保罗-吉夏尔总结说:"我们的工作不仅加深了我们对中心粒形成的理解,还为细胞和分子生物学开辟了令人难以置信的前景,因为这种方法可以应用于其他大分子和细胞结构,研究它们在空间和时间维度上的组装。"编译自/scitechdaily ... PC版: 手机版:

封面图片

科学家发现自然界最大细胞中神秘漩涡运动的起源

科学家发现自然界最大细胞中神秘漩涡运动的起源 最新研究揭示了卵细胞中"漩涡状"流动背后的自然机制,这种流动对营养物质的高效分配至关重要。这些发现是通过先进的建模和实验方法实现的,为细胞运输提供了新的见解,并可能影响更广泛的生物学研究。模拟微管如何弯曲并引导成熟卵细胞中的物质形成旋涡状流动的快照。图片来源:S. Dutta 等人科学家们早就知道,成熟的卵细胞(称为卵母细胞)会在内部产生类似旋涡的液流来运输营养物质,但这些液流是如何产生的一直是个谜。现在,Flatiron 研究所的计算科学家与普林斯顿大学和西北大学的合作者共同领导的研究揭示了这些流动看起来就像微型龙卷风是由一些细胞成分的相互作用有机产生的。他们的研究成果发表在四月号的《自然-物理》(Nature Physics)杂志上,他们利用理论、先进的计算机建模和果蝇卵细胞实验揭示了龙卷风的力学原理。这些成果有助于科学家们更好地理解有关卵细胞发育和细胞运输的基础问题。"我们的发现代表了这一领域的一大飞跃,"共同作者、Flatiron 研究所计算生物学中心(CCB)主任迈克尔-谢利(Michael Shelley)说。"我们能够应用多年来从其他研究中获得的先进数值技术,这让我们能够比以往更好地看待这个问题。"在一个典型的人体细胞中,一个典型的蛋白质分子通过扩散从细胞的一侧蜿蜒到另一侧只需要 10 到 15 秒;而在一个小型细菌细胞中,这一过程只需要一秒钟。但在本文研究的果蝇卵细胞中,单是扩散就需要一整天的时间这对细胞的正常功能来说时间太长了。相反,这些卵细胞发展出了"旋风流",它在卵细胞内部盘旋,迅速分配蛋白质和营养物质,就像龙卷风能把物质卷起并移动到比风更远更快的地方一样。在这段循环播放的卵母细胞视频中,可以看到物质在整个生长细胞中循环并帮助分配养分。图片来源:S. Dutta 等人"受精后,卵母细胞将成为未来的动物,"该研究的合著者、普林斯顿大学和中央研究院的研究员萨扬坦-杜塔(Sayantan Dutta)说。"如果破坏了卵母细胞中的流动,所产生的胚胎就不会发育"。研究人员使用了 Flatiron 研究所研究人员开发的一款名为SkellySim 的先进开源生物物理学软件包。通过SkellySim,他们模拟了参与制造细胞的成分。其中包括微管细胞内部的柔性细丝和分子马达,分子马达是作为细胞工作母机的特化蛋白质,携带着被称为有效载荷的特殊分子组。科学家还不太清楚这些有效载荷是由什么组成的,但它们在产生气流中起着关键作用。研究人员模拟了数以千计的微管在载荷分子马达的作用力下的运动。通过在实验和模拟之间来回切换,研究人员得以了解旋流的结构,以及它们是如何从细胞液和微管之间的相互作用中产生的。"我们的理论工作使我们能够放大并以三维方式实际测量和可视化这些旋涡,"该研究的合著者、CCB 研究科学家 Reza Farhadifar 说。"我们看到了这些微管如何在没有任何外部线索的情况下,通过自组织产生大规模流动。"在这段循环播放的卵母细胞视频中,可以看到物质在整个生长细胞中循环并帮助分配养分。图片来源:S. Dutta 等人模型显示,在卵母细胞内部,微管在分子马达的作用下发生弯曲。当微管在这种负荷下屈曲或弯曲时,会导致周围液体移动,从而使其他微管重新定向。在一个足够大的弯曲微管群中,所有微管都朝同一方向弯曲,流体流动就会变得"合作"。随着微管的集体弯曲,移动的有效载荷在整个卵子中形成漩涡或漩涡状流动,帮助分子分散到细胞周围。有了漩涡,分子可以在 20 分钟而不是 20 小时内穿过细胞。谢利说:"该模型显示,该系统具有令人难以置信的自我组织能力,能够创造出这种功能性流动。而只需要一些成分只有微管、细胞的几何形状和携带有效载荷的分子马达。"这些新发现为更好地了解卵细胞的发育奠定了基础。这些结果还有助于揭开其他细胞类型中物质运输的神秘面纱。"既然我们知道了这些漩涡是如何形成的,我们就可以提出更深层次的问题,比如它们是如何混合细胞内的分子的?这开启了理论与实验之间的新对话。"法哈迪法尔说。"这项新研究让人们对微管有了全新的认识。微管在植物和动物等几乎所有真核生物的各种细胞类型和细胞功能(如细胞分裂)中发挥着核心作用。这使它们成为"细胞工具箱中非常重要的一部分",Dutta 说。"通过更好地理解它们的机制,我认为我们的模型将有助于推动细胞生物物理学中许多其他非常有趣的问题的发展"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

解码癌症:研究人员揭示细胞是如何"叛变"的

解码癌症:研究人员揭示细胞是如何"叛变"的 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 约翰斯-霍普金斯大学医学院的科学家们绘制了人类乳腺和肺细胞中的一条分子途径,它可能导致基因组过度复制,而这正是癌细胞的一个特征。这些发现最近发表在《科学》杂志上,揭示了当一组分子和酶触发并调节所谓的"细胞周期"(用细胞的遗传物质制造新细胞的重复过程)时,会出现什么问题。研究人员认为,这些发现可用于开发中断细胞周期障碍的疗法,并有可能阻止癌症的生长。为了复制,细胞会遵循一个有序的程序,首先复制整个基因组,然后分离基因组副本,最后将复制的DNA平均分成两个"子"细胞。人类细胞的每对染色体有 23 对一半来自母亲,一半来自父亲,包括性染色体 X 和 Y即总共 46 对,但已知癌细胞会经历一个中间状态,即拥有双倍的数量92 条染色体。这是如何发生的是一个谜。约翰霍普金斯大学医学院分子生物学和遗传学副教授塞尔吉-雷戈特(Sergi Regot)博士说:"癌症领域科学家们的一个永恒问题是:癌细胞基因组是如何变得如此糟糕的?我们的研究对细胞周期的基础知识提出了挑战,让我们重新评估了关于细胞周期如何调节的想法"。细胞周期调控面临的挑战雷戈特说,复制基因组后受到压力的细胞会进入休眠或衰老阶段,并错误地冒着再次复制基因组的风险。一般来说,这些休眠细胞在被免疫系统"识别"为有问题的细胞后,最终会被清除。但有时,尤其是随着年龄的增长,免疫系统无法清除这些细胞。如果任由这些异常细胞在体内游荡,它们就会再次复制基因组,在下一次分裂时对染色体进行洗牌,从而引发癌症。为了确定细胞周期中出现问题的分子途径的细节,雷戈特和研究生研究助理康纳-麦肯尼(Connor McKenney)领导约翰-霍普金斯大学的研究小组,重点研究了乳腺导管和肺组织中的人类细胞。原因何在?这些细胞的分裂速度通常比体内其他细胞更快,从而增加了观察细胞周期的机会。观看这段视频,了解细胞在不分裂的情况下经历两次复制基因组的细胞周期阶段。细胞核中出现的亮点表明 DNA 正在复制的位置。资料来源:约翰-霍普金斯大学医学院塞尔吉-雷戈特实验室雷戈特的实验室擅长对单个细胞进行成像,因此特别适合发现极少数没有进入休眠期、继续复制基因组的细胞。在这项新研究中,研究小组仔细观察了数千张单细胞在细胞分裂过程中的图像。研究人员开发了发光生物传感器,用于标记细胞周期蛋白依赖性激酶(CDKs)。他们发现,各种 CDK 在细胞周期的不同时期激活。在细胞受到环境压力(如干扰蛋白质生产的药物、紫外线辐射或所谓的渗透压(细胞周围水压的突然变化))后,研究人员发现 CDK 4 和 CDK 6 的活性降低了。细胞周期破坏的研究结果五到六小时后,当细胞开始准备分裂时,CDK 2 也受到了抑制。此时,一种名为无丝分裂促进复合物(APC)的蛋白质复合物在细胞分裂前的阶段被激活,这一步骤被称为有丝分裂。Regot说:"在研究中的受压环境中,APC激活发生在有丝分裂之前,而通常人们只知道它在有丝分裂过程中激活。"当暴露在任何环境压力下时,约 90% 的乳腺细胞和肺细胞会离开细胞周期,进入安静状态。在他们的实验细胞中,并非所有细胞都安静了下来。研究小组发现,约有 5%-10%的乳腺细胞和肺细胞重返细胞周期,再次分裂染色体。通过另一系列实验,研究小组发现,所谓的应激活化蛋白激酶活性的增加与一小部分细胞脱离安静阶段并继续将基因组翻倍有关。雷戈特说,目前正在进行一些临床试验,测试DNA损伤剂与阻断CDK的药物。联合用药有可能促使一些癌细胞将基因组复制两次,产生异质性,最终产生抗药性。也许有药物可以阻止 APC 在有丝分裂前激活,从而防止癌细胞二次复制基因组,防止肿瘤阶段性进展。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

器官的建筑师:塑造我们发育的神奇细胞

器官的建筑师:塑造我们发育的神奇细胞 牙齿上皮(细胞表面;黄色)和间质(细胞表面;品红色)。增殖细胞(青色)扩大组织,在组织中心产生机械压力,推动主要牙齿信号中心或组织器珐琅质结的形成。资料来源:尼哈-品查-什罗夫和徐鹏飞幸运的是,就像城市中的手机信号塔一样,胚胎中特定位置的特殊细胞(称为组织者)会向其他细胞发送信号,帮助它们组织起来,构建我们复杂的器官。其中一些信号是从组织器这个特权信号中心发出的分子。组织器周围的细胞会根据自己的位置接收到或强或弱的信号,并做出相应的决定。这些信号中心在组织中的位置错误会导致胚胎畸形,甚至致命。科学家们很早就知道这些信号传导中心的重要性,但它们是如何出现在特定位置上的,却一直不得而知。物理学家和生物学家通过国际合作才找到了答案。几年前,Cedars-Sinai Guerin 儿童医院和加州大学旧金山分校(UCSF)的奥菲尔-克莱因(Ophir Klein)教授实验室,以及德累斯顿工业大学生命物理学卓越集群和加州大学圣巴巴拉分校(UCSB)的奥特格-坎帕斯(Otger Campàs)教授实验室预感到了它可能的工作原理,于是联手合作。他们共同发现,是生长组织内部的机械压力决定了信号中心将出现在哪里。研究工作表明,机械压力和分子信号传导在器官发育过程中都发挥着作用,Cedars-Sinai Guerin 儿童医院执行主任、本研究的共同通讯作者、医学博士 Ophir Klein 说,"他还是该院的 David and Meredith Kaplan 儿童健康杰出讲座教授。"组织细胞的机械压力这项发表在《自然-细胞生物学》(Nature Cell Biology)上的研究表明,当细胞在胚胎门牙中生长时,它们会感受到生长压力,并利用这一信息来组织自己。加州大学旧金山分校牙科学院博士后学者、该研究的共同第一作者尼哈-平查-什罗夫博士说:"这就像那些吸水变大的玩具。想象一下,在一个密闭的空间里会发生什么。在门牙结中发生的情况是,细胞在一个固定的空间中大量繁殖,这导致中心压力积聚,然后变成一个特化细胞群。就像拥挤的酒吧里的人一样,组织中的细胞开始感受到来自同伴的挤压。研究人员发现,感受到较强压力的细胞会停止生长,并开始发出信号,将牙齿周围的其他细胞组织起来。它们真的被挤压成了牙齿的组织者。"该研究的共同通讯作者、现任德累斯顿工业大学生命物理学卓越集群常务董事、教授兼组织动力学主席、加州大学伯克利分校机械工程系前副教授奥特格-坎帕斯博士说:"我们能够利用实验室以前开发的微滴技术,弄清机械压力的积累如何影响器官的形成。组织压力在建立信号传导中心方面的作用确实令人兴奋。看看机械压力是否或如何影响其他重要的发育过程将是一件有趣的事情。"胚胎在形成组织和器官的过程中,会利用这些信号中心来引导细胞。就像建造摩天大楼或桥梁一样,雕刻我们的器官需要严密的计划、大量的协调和正确的结构力学。在建造桥梁的过程中,任何一个环节出现问题都可能是灾难性的,而在子宫内生长时,也可能对我们造成损害。奥菲尔-克莱因说:"通过了解胚胎是如何形成器官的,我们可以开始询问先天性畸形儿出了什么问题。这项工作可能会促使我们对先天缺陷是如何形成的以及如何预防进行更多的研究。"编译自/scitechdaily ... PC版: 手机版:

封面图片

研究人员在男性生殖细胞中检测到SARS-CoV-2 病毒 可存活100天以上

研究人员在男性生殖细胞中检测到SARS-CoV-2 病毒 可存活100天以上 在显微镜下,即使 PCR 检测未能在精液中检测到病毒,也能在男性生殖细胞中检测到SARS-CoV-2病毒。这一发现对自然受孕和辅助生殖可能产生的影响提出了警告。圣保罗大学的研究人员发现,COVID-19病毒可在感染者的精子中潜伏长达 110 天,影响精液质量。这一发现凸显了病毒渗透和破坏男性生殖系统的能力,建议那些计划在康复后受孕的人需要一个隔离期。科学家们首次发现,引起 COVID-19 的 SARS-CoV-2 病毒可在患者出院后的 90 天内和初次感染后的 110 天内残留在精子中,从而降低精液质量。巴西圣保罗大学(USP)的研究人员在《男性学》(Andrology)杂志上发表的一篇文章报告了这项研究。作者建议,计划要孩子的人在从 COVID-19 感染中恢复后,应遵守一段时间的"隔离"。大流行开始四年多后,我们知道 SARS-CoV-2 能够入侵并破坏多种类型的人体细胞和组织,包括生殖系统,而睾丸是生殖系统的"门户"。尽管科学家们注意到这种病毒比其他病毒对男性生殖道更具侵袭性,而且在针对睾丸的尸检中也发现了这种病毒,但通过聚合酶链反应(PCR)分析,却很少在精液中检测到这种病毒,因为聚合酶链反应分析的重点是病毒DNA。为了填补这一知识空白,该研究使用实时 PCR 和透射电子显微镜(TEM)来检测 COVID-19 病毒康复者捐献的精液和精子中的病毒RNA。精液样本取自13名年龄在21至50岁之间的患者,他们患有轻度、中度和重度COVID-19,并住进了该大学医学院(FM-USP)下属的综合医院Hospital das Clínicas (HC)。分析在出院后 90 天和确诊后 110 天内进行。作者说,虽然所有病例的精液中SARS-CoV-2的PCR检测结果均为阴性,但在11名中度至重度COVID-19患者中,有8人(72.7%)在出院后90天内的精子中检测到了SARS-CoV-2病毒,这并不意味着SARS-CoV-2病毒存在的时间更长。在一名轻度 COVID-19 患者的精子中也检测到了 SARS-CoV-2 病毒。总之,13 名患者中有 9 人(69.2%)的精子中检测到了病毒。另外两名患者的配子超微结构损伤与确诊为 COVID-19 的患者相似。因此,作者得出结论,其中 11 名患者的精子中含有病毒。"此外,我们还发现精子在核DNA的基础上产生了'细胞外陷阱'。换句话说,细胞核中的遗传物质发生解聚,精子的细胞膜破裂,DNA被排出到细胞外介质中,形成类似于之前描述的SARS-CoV-2全身炎症反应中的网络,"FM-USP教授、文章通讯作者Jorge Hallak说。这些网络就是中性粒细胞胞外捕获器(NET)。中性粒细胞是白细胞的一种,是免疫系统的第一道防线,能固定并杀死致病细菌、真菌和病毒。然而,当中性粒细胞过度活跃时,NET 也会伤害生物体内其他部位的组织。TEM 分析表明,精子在核 DNA 的基础上产生了细胞外捕获器来中和病原体,通过一种被称为自杀式 ETosis-like 反应(ETosis 意为通过细胞外捕获器死亡)的机制"牺牲自己"来遏制病原体。"精子是先天性免疫系统的一部分,能帮助机体抵御病原体的攻击,这一发现在文献中是独一无二的,因此这项研究非常重要。这可以说是科学范式的转变,"哈拉克说。他补充说,迄今为止,人们知道精子有四种功能:将雄性配子的遗传内容与雌性配子结合、使雌性配子受精、促进胚胎发育直至怀孕第十二周,以及共同决定成年后某些慢性疾病的发生,如不孕症、性腺功能减退症、糖尿病、高血压、某些类型的癌症和心血管疾病等。这项研究中描述的发现为精子在生殖中的作用增添了新的功能。哈拉克说:"医生和监管机构应迫切考虑我们的发现对精子用于辅助生殖可能产生的影响,特别是巴西实验室在90%以上的夫妻不孕症病例中使用的配子显微操作技术,这种技术涉及将单个精子注射到卵子中,被称为卵胞浆内单精子显微注射(ICSI)。"哈拉克主张在感染 SARS-CoV-2 后至少 6 个月内推迟自然受孕,特别是辅助生殖,即使随后出现轻微的 COVID-19 也是如此。哈拉克是科学界和医学界最早建议在大流行期间更加谨慎地执行生殖方案的成员之一。自 2020 年以来,他一直在研究 COVID-19 对生殖健康和性健康的影响,当时他作为一名急诊室医生志愿服务于 HC-FM-USP 前线。他的研究小组(包括调频-USP病理学系的同事)已经在该领域取得了重要发现,例如,男性感染严重的COVID-19病毒并死于该病的风险较高,这仅仅是因为他们的性别,这可能是因为睾丸中有大量的ACE2受体和TMPRSS2,而卵巢中只有ACE2受体。病毒利用 ACE2 侵入细胞;TMPRSS2 是一种能使病毒与细胞表面 ACE2 结合的蛋白质。在与美国公共卫生学院临床泌尿科成员进行的一项研究中,该小组发现,由于大流行病的影响,卫生工作者的性欲和性满意度急剧下降,色情产品消费增加,自慰行为也更加频繁。研究小组还发现,睾丸是病毒感染的潜在目标,病毒感染会导致亚临床附睾炎(附睾发炎,附睾是连接在每个睾丸上的一条狭窄管道,用于储存、成熟和运输精子细胞),研究小组还首次发现了与 COVID-19 相关的睾丸病变的严重程度。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

世界首例自体再生胰岛移植成功 25年糖尿病病史患者被治愈

世界首例自体再生胰岛移植成功 25年糖尿病病史患者被治愈 这是国际上首次利用干细胞来源的自体再生胰岛移植,成功治愈胰岛功能严重受损糖尿病的病例报道。论文截图。糖尿病严重威胁人类健康,患者长期血糖控制不佳可导致失明、肾衰竭、心脑血管意外、截肢等严重并发症,甚至可造成酮症酸中毒或无意识低血糖而致死。中国是糖尿病第一大国,患者多达1.4亿,其中约四千万需终身依赖胰岛素注射治疗。血糖难以控制的严重患者,只有通过从捐献的胰腺中提取胰岛组织并微创注射的移植疗法方可有效治疗,从而避免并发症的进展。然而,受制于供体严重匮乏、胰岛分离技术复杂等因素,目前临床需求很难满足。因此,如何在体外规模化地再生人胰岛组织,成为一项世界性的学术难题,并得到广泛关注。上海长征医院器官移植中心主任殷浩教授表示,相关科研团队历经十余年研究,利用患者血液PBMC重编程为自体iPSC细胞,并使用国际首创技术使之转变为“种子细胞”即内胚层干细胞(Endoderm stem cell, EnSC),最终实现在体外再造胰岛组织(E-islet)。该项技术已趋于成熟,是再生医学治疗糖尿病领域的重大突破。该项技术的首例受益者为59岁男性,有25年2型糖尿病病史,并发展为终末期糖尿病肾病(尿毒症),2017年6月出现终末期糖尿病肾病并接受肾移植。但由于其胰岛功能近乎衰竭,每天需要多次注射胰岛素,未来存在极大的糖尿病严重并发症风险。2021年7月19日,由于对低血糖的担忧以及考虑血糖控制不佳对供体肾脏长期生存的不利影响,该患者在上海长征医院接受了自体再生胰岛移植治疗,术后第11周即开始完全脱离外源胰岛素,其口服降糖药(拜糖平、二甲双胍)术后逐步减量,并在第48周和56周实现彻底撤药,目前该患者已彻底脱离胰岛素长达33个月。殷浩称,此后该患者空腹及餐后C肽等关键指标较术前显著提高,证实胰岛功能得到有效恢复;肾脏功能等随访指标均处于正常范围,也提示该疗法可避免糖尿病并发症的进展。总的来说,这是国际上首次使用自体衍生胰岛治疗胰岛功能受损的T2D患者的人体组织替代疗法。长征医院透露,除了首例严重2型糖尿病患者,上述联合团队也成功开展并治愈了多例脆性1型糖尿病患者。殷浩表示,未来团队将聚焦干细胞来源再生胰岛组织的相关研究,进一步开发无需免疫抑制的“通用型”再生胰岛组织,从而为广大长期依赖胰岛素注射的糖尿病患者提供新的治愈疗法。上海长征医院殷浩教授、石勇铨教授、董伟华教授,中国科学院程新教授及上海仁济医院张明教授为论文共同通讯作者;中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)吴佳颖、付天龙、聂螣騛、魏同坤,长征医院李拓、郭猛、季峻松、孟小茜为论文共同第一作者。(记者 李佳蔚) ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人