研究人员改良血细胞传递抗生素以杀死危险的病原体而不伤害人体

研究人员改良血细胞传递抗生素以杀死危险的病原体而不伤害人体但是可能有办法更精确地瞄准这些药物,几年前,加拿大麦克马斯特大学的科学家们开发了他们所谓的"超人红细胞"--本质上,他们抽出了正常血细胞的内脏,并把它们塞满了药物。当混合血细胞被注射回体内时,理论上它们应该能够更安全地携带药物载荷,而不会被免疫系统攻击。在新的研究中,该团队解决了一个遗留问题--如何让混合血细胞对准所需目标?他们在血细胞外面涂上了一种针对他们试图杀死的细菌种类的抗体,这使得血细胞积聚在有害病原体周围,更精确地传递药物载荷。研究人员用一种叫做多粘菌素B(PmB)的抗生素测试了这种药物输送系统,这种抗生素能够有效地杀死对其他药物有抗性的细菌,但这对健康细胞来说是有代价的,有可能造成肾脏损伤、神经系统问题和其他严重的副作用。因此,它被认为是一种最后一线抗生素。在体外的细胞培养测试中,该团队将血细胞装入PmB,并将它们与抗药性大肠杆菌锁定。他们发现,这些细胞的装载效率约为90%,并能有效地将PmB传递给细菌,其水平足以杀死它们。为了测试靶向性,该团队还将一种不同的细菌,即产气克雷伯氏菌,暴露在涂有大肠杆菌抗体的混合细胞上,并发现它们不足以杀死这些细菌,这表明选择性的靶向作用已经产生。研究人员说,这种方法有很多优点。它不仅使药物载荷不影响健康细胞,而且由于红血球的寿命很长,大约为120天,它们有足够的时间到达目标部位。该技术还可以减少所需剂量的数量和每次剂量的药物量。该研究的主要作者汉娜-克里维奇说:"从本质上讲,我们正在使用红血球将这种抗生素隐藏在里面,这样它在通过身体时就不能再与健康细胞发生作用或伤害。我们设计了这些红细胞,所以它们只能针对我们希望它们针对的细菌。"该团队表示,未来的工作将研究该技术跨越血脑屏障向大脑输送药物的潜力,以帮助治疗神经系统疾病,如阿尔茨海默氏症。该研究发表在《ACS传染病》杂志上。了解更多:https://brighterworld.mcmaster.ca/articles/stealth-care-system-smart-red-blood-cells-deliver-antibiotics-that-target-specific-bacteria/...PC版:https://www.cnbeta.com.tw/articles/soft/1331803.htm手机版:https://m.cnbeta.com.tw/view/1331803.htm

相关推荐

封面图片

世界卫生组织5月17日发布了最新的抗生素耐药重点病原体清单(BacterialPathogenPriorityList),其中包

世界卫生组织5月17日发布了最新的抗生素耐药重点病原体清单(BacterialPathogenPriorityList),其中包括15种抗生素耐药菌,根据对新抗生素需求的紧迫性,将其分为关键、高等和中等三个优先级。该清单为开发新的和必要的治疗方法以遏制抗生素耐药性提供了指导。当细菌、病毒、真菌和寄生虫对药物不再产生反应时,就会出现抗生素耐药性,从而使感染更难治疗,并增加疾病传播、患严重疾病和死亡的风险。抗生素耐药性很大程度上是由滥用和过度使用抗生素造成的。更新后的清单纳入了新的证据和专家见解,以指导新抗生素的研发并促进国际协调。(央视新闻)

封面图片

创新的疾病控制技术:合成“隔间”阻止病原体共享抗生素抗性基因

创新的疾病控制技术:合成“隔间”阻止病原体共享抗生素抗性基因杜克大学生物医学工程师开发了一种控制细胞过程的新合成方法。该方法涉及指导细胞建立调节生物分子功能的隔间,而不是直接与细胞机械互动。这种方法可以影响细菌之间的遗传指令传播和哺乳动物细胞中的蛋白质回路,有可能导致理解和对抗疾病和抗生素抗性病原体的新策略。研究人员证明,他们的方法可以影响两个细胞过程,一个负责在细菌中传播遗传指令,另一个负责调节哺乳动物细胞中的蛋白质回路。这些结果可能被证明对开发新的战略以了解和对抗疾病或阻止抗生素抗性病原体的传播是非常宝贵的。该成果今天(2023年2月6日)在线发表于《自然-化学生物学》杂志。这些红色斑点是荧光的合成隔间,由活细胞自身的生物机器建造,以控制其生物分子行为。资料来源:戴一凡,杜克大学戴一凡是一名博士后研究员,在杜克大学生物医学工程系AlanL.Kaganov特聘教授AshutoshChilkoti的实验室和生物医学工程系JamesL.Meriam特聘教授LingchongYou的实验室工作,他胡搜:"一个活细胞就像一碗浓稠的面汤,细胞中生物分子的密度有时被描述为把地球上的每个人都放入大盐湖。"戴说:"琥珀的形成有时会将动物锁住并保存数千年,因为它与周围环境相比具有独特的材料特性。科学家们认为,也许细胞可以对信息做同样的事情。"生物微机械通常依赖于所谓的"锁和钥匙"机制,其中一个蛋白质、基因链或其他生物大分子的形状和大小恰好可以与其目标结构相互作用。因为这些是最容易和最明显的研究和重现的过程,几乎所有的生物医学研究都集中在其庞大而复杂的机械网络。但是,由于细胞中密布着这种生物分子机械,而且它们需要控制活动以应对整个生命过程中的不同需求,科学家们长期以来一直怀疑它们必须有方法来调控活动。但直到2009年,研究人员才发现了这样一种方法的机制,称为相分离介导的生物凝集物。生物凝结物是细胞可以建立的小隔间,将某些蛋白质和分子分离或困在一起,阻碍或促进其活动。研究人员刚刚开始了解冷凝物是如何工作的,以及它们可以用来做什么。创建一个可以告诉细胞创建这些生物分子笼子的合成版本的平台是朝着这两个目标迈出的一大步。本研究最值得关注的部分是过去研究中出现的规则在指导这些冷凝物的物理特性的合理工程方面的有效性,而这些冷凝物又在活细胞中有效地工作,尽管有许多与细胞内环境有关的干扰因素。在这篇论文中,Dai、Chilkoti、You和他们来自圣路易斯华盛顿大学GeneK.Beare生物医学工程杰出教授和生物分子凝集物中心主任RohitV.Pappu实验室的同事,展示了创建一套合成的遗传指令,使细胞创建不同类型的凝集物以捕获各种生物分子过程。在一个例子中,他们建立了凝结物,阻止被称为质粒的DNA小包在细菌之间传播,这个过程被称为水平基因转移。这个过程是病原体用来传播对抗生素的抗性的主要方法之一,阻止它的发生可能是打击"超级细菌"的产生和扩散的关键一步。研究人员还表明,他们可以用这种方法来控制大肠杆菌中DNA转录成RNA的过程,通过将不同的因素聚集在一起,有效地放大特定基因的表达。他们进一步展示了这种方法在哺乳动物细胞中调控蛋白质电路。调控特定基因的活性和蛋白质的活动可能是对抗各种疾病,特别是遗传性疾病的一个有用方法。"这篇论文表明,我们作为生物医学工程师,可以从头开始设计新的分子部件,说服细胞制造这些部件,并在细胞内组装这些部件以制造新机器,"Chilkoti说。"这些合成的凝结物然后可以在细胞内被打开,以控制细胞的功能方式。这篇论文是一个新兴领域的一部分,它将使我们能够以新的和令人兴奋的方式重新编程生命。"...PC版:https://www.cnbeta.com.tw/articles/soft/1342921.htm手机版:https://m.cnbeta.com.tw/view/1342921.htm

封面图片

科学家开发出能杀死数种超级细菌的新抗生素分子

科学家开发出能杀死数种超级细菌的新抗生素分子细菌正在迅速发展对我们人类最好的药物的抗性,从而使我们处于重大健康危机的边缘。但现在,一种新抗生素已经显示出对几个关键的“超级细菌”有希望与此同时对身体中的好细菌的损害最小。细菌是进化行动的一个教科书式的例子。当它们面临环境危害时,只有最强壮的细菌才能存活下来进行复制,这意味着最终整个群体都有抗药能力。一类被称为革兰氏阴性菌的细菌特别有问题,它们用更厚的细胞壁和拒绝药物的分子泵来保护自己。新抗生素和其他治疗方法的开发进度已经得到了放缓。因此,我们人类正在迅速耗尽有效的抗生素,这有可能使我们回到“医学的黑暗时代”--那个曾经连轻微感染都会致命的年代。从事这项新研究的科学家们现在已经开发出一种表现出前景的新型候选抗生素。研究小组从一种对革兰氏阳性细菌有效的现有抗生素开始,并通过一系列的结构修改试图使其对革兰氏阴性菌株具有更强的抗性。其中一个修改后的化合物特别引人注目。这个被命名为fabimycin的候选药物对200多个临床分离的抗生素耐药菌群效果都表现很好,包括总共54个菌株如大肠杆菌、肺炎克雷伯菌和鲍曼不动杆菌。在对小鼠的测试中,发现fabimycin可以清除肺炎或尿路感染的耐药病例,并使细菌水平甚至低于感染前的水平。重要的是,fabimycin在其攻击中具有相对的选择性并使某些类型的无害细菌不受影响。这比许多现有的抗生素要好得多,因为这些抗生素会不分青红皂白地消灭微生物组中的许多有益细菌从而导致一系列的不良副作用。进一步的发展最终可以将fabimycin或类似的分子添加到我们对抗超级细菌的武器库中,尤其是那些难以治疗的感染。PC版:https://www.cnbeta.com/articles/soft/1303245.htm手机版:https://m.cnbeta.com/view/1303245.htm

封面图片

新发现的抗生素Dynobactin可杀死危险的耐药细菌

新发现的抗生素Dynobactin可杀死危险的耐药细菌世卫组织将对抗生素产生抗药性的耐药细菌数量稳步增长称为"无声的大流行"。由于近几十年来没有新的抗菌药物被引入市场,情况变得更糟。即使是现在,也不是所有的感染都能得到适当的治疗,病人仍然面临着常规干预措施带来的伤害风险。人类迫切需要新的活性物质来阻止耐抗生素细菌的传播。最近,由波士顿东北大学的研究人员和巴塞尔大学生物中心的塞巴斯蒂安-希勒教授领导的团队取得了一项重大发现。这项研究是国家研究能力中心(NCCR)"抗击"项目的一个组成部分,其结果最近发表在《自然-微生物学》上。顽强的对手研究人员通过计算筛选方法发现了新的抗生素Dynobactin。这种化合物可以杀死革兰氏阴性细菌,其中包括许多危险的和有抗性的病原体。"希勒说:"寻找针对这组细菌的抗生素远非小事一桩。它们被它们的双膜很好地保护着,因此可以提供攻击的机会很少。而且在它们数百万年的进化过程中,这些细菌已经找到了许多使抗生素无害化的方法"。就在去年,希勒的团队破译了最近发现的肽类抗生素Darobactin的作用方式。获得的知识被整合到新化合物的筛选过程中。研究人员利用了许多细菌产生抗生素肽以相互对抗的事实。而且,这些肽与天然物质不同,是在细菌基因组中编码的。致命的效果"这种肽类抗生素的基因有一个共同的特点,"共同第一作者SeyedM.Modaresi博士解释说。"根据这一特征,计算机系统地筛选了那些产生这种肽的细菌的整个基因组。这就是我们识别Dynobactin的方式"。在他们的研究中,作者证明了这种新的化合物是非常有效的。由抗性细菌引起的危及生命的败血症的小鼠通过服用Dynobactin,在严重的感染中幸存下来。通过结合不同的方法,研究人员已经能够解决Dynobactin的结构以及作用机制。这种肽能阻断细菌膜蛋白BamA,它在形成和维持外部保护性细菌包膜方面发挥着重要作用。"Dynobactin像一个塞子一样从外面粘住BamA,阻止它履行其职责,细菌就会因此死亡,"莫达里西说。"尽管Dynobactin与已经知道的Darobactin几乎没有任何化学相似之处,但它在细菌表面有相同的目标。这一点是我们一开始没有想到的。"对抗生素研究的推动然而,在分子水平上,科学家们已经发现Dynobactin与BamA的相互作用不同于Darobactin。通过结合两者的某些化学特征,可以进一步改进和优化潜在药物。这是通往有效药物道路上的重要一步。"基于计算机的筛选将为识别急需的抗生素提供新的动力,"希勒说。"在未来,我们希望扩大我们的搜索范围,研究更多的肽是否适合作为抗菌药物"。...PC版:https://www.cnbeta.com.tw/articles/soft/1332961.htm手机版:https://m.cnbeta.com.tw/view/1332961.htm

封面图片

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌这些讨厌的细菌是近年来医务人员最恼火的一些问题。这些细菌是鲍曼不动杆菌和铜绿假单胞菌,分别以引发肺炎和败血症而闻名。它们一直对抗生素有抗药性,使它们几乎无法治疗。这些耐抗生素的细菌一直是如此致命,以至于世界卫生组织将它们加入了"优先病原体"名单,这是一份急需新的抗生素治疗的病原体名单,因为它们对免疫系统受损的人构成了风险。不过,有了这个新发现,科学家们可能最终在这场持续的战斗中获得了优势。发表在《分子医学》上的这项研究发现,像糖精、醋磺酰胺-K和甜蜜素这样的人工甜味剂能抑制抗生素耐药菌的生长。特别是安赛蜜-K,证明在防止这些细菌发展生物膜方面特别有效,生物膜可以保护它们不受抗生素的影响。总的来说,这些甜味剂在减少细菌对普通抗生素的耐药性方面显示出有效性,使其更容易有效和高效地治疗这些细菌,即使使用较小剂量的抗生素。而且,由于这些人工甜味剂在大多数饮食和无糖食品中都很活跃,它们已经被广泛使用。麦卡锡说,开发新的抗生素往往需要数年甚至数十亿美元的时间。因此,在许多人用来喝咖啡的甜味剂中发现一种能够削弱抗生素耐药性细菌的化合物是令人兴奋的,也是治疗败血症和肺炎的一个巨大进步。像败血症和肺炎背后的细菌往往能迅速适应和应对药物,使它们对抗生素特别具有抗药性。这种抗药性在人类和动物身上自然发生,但当过度开药时,我们只是在升级这个问题。能够打击这些耐抗生素的细菌,最终可以帮助突破我们所知的一些最大的病原体威胁。...PC版:https://www.cnbeta.com.tw/articles/soft/1333719.htm手机版:https://m.cnbeta.com.tw/view/1333719.htm

封面图片

中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件

中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件对多种药物产生抗药性的细菌感染是一项重大的世界性挑战,现有的抗生素都无法治疗这种感染。来自中国的一个研究小组在《展望化学》(AngewandteChemie)杂志上发表了一种创新抗生素的新策略,旨在抗击这些耐药细菌。这种方法利用蛋白质成分与荧光脂链相结合来开发药物。抗生素的处方往往过于随意。在许多国家,抗生素不经处方就被分发,并在工厂化养殖中使用:预防感染和提高性能。因此,抗药性在不断增加,对储备抗生素的抗药性也在增加。开发创新型替代品至关重要。我们可以从微生物本身吸取一些教训。脂蛋白是带有脂肪酸链的小分子蛋白质,细菌在与微生物竞争者的斗争中广泛使用这种蛋白质。许多脂蛋白已被批准用作药物。活性脂蛋白的共同点包括带正电荷和两亲结构,即它们有排斥脂肪的部分,也有排斥水的部分。这使它们能够与细菌膜结合,并穿透细菌膜进入内部。上海华东师范大学程义云领导的研究小组旨在通过用氟原子取代脂链中的氢原子来放大这种效应。这使得脂链同时具有憎水性(疏水性)和憎脂性(疏脂性)。它们特别低的表面能加强了与细胞膜的结合,而它们的疏脂性则破坏了膜的内聚力。研究小组利用氟化碳氢化合物和肽链合成了一个氟化脂肽谱系(物质库)。为了将两部分连接起来,他们使用了氨基酸半胱氨酸,通过二硫桥将它们结合在一起。研究人员通过测试这些分子对耐甲氧西林金黄色葡萄球菌(MRSA)的活性,对这些分子进行了筛选。MRSA是一种广泛存在的高危菌株,几乎对所有抗生素都有抗药性。他们发现最有效的化合物是"R6F",这是一种由六个精氨酸单位和由八个碳原子和十三个氟原子组成的脂质链构成的多氟脂肪肽。为了提高生物相容性,R6F被包裹在磷脂纳米颗粒中。在小鼠模型中,R6F纳米粒子对MRSA引起的败血症和慢性伤口感染非常有效。没有观察到任何毒副作用。纳米粒子似乎以多种方式攻击细菌:它们抑制重要细胞壁成分的合成,促进细胞壁的崩溃;它们还刺穿细胞膜并破坏其稳定性;破坏呼吸链和新陈代谢;增加氧化应激,同时破坏细菌的抗氧化防御系统。这些作用结合在一起,就能杀死细菌--其他细菌和MRSA。似乎不会产生抗药性。这些见解为开发治疗多重耐药细菌的高效荧光多肽药物提供了起点。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428428.htm手机版:https://m.cnbeta.com.tw/view/1428428.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人