中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件

中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件对多种药物产生抗药性的细菌感染是一项重大的世界性挑战,现有的抗生素都无法治疗这种感染。来自中国的一个研究小组在《展望化学》(AngewandteChemie)杂志上发表了一种创新抗生素的新策略,旨在抗击这些耐药细菌。这种方法利用蛋白质成分与荧光脂链相结合来开发药物。抗生素的处方往往过于随意。在许多国家,抗生素不经处方就被分发,并在工厂化养殖中使用:预防感染和提高性能。因此,抗药性在不断增加,对储备抗生素的抗药性也在增加。开发创新型替代品至关重要。我们可以从微生物本身吸取一些教训。脂蛋白是带有脂肪酸链的小分子蛋白质,细菌在与微生物竞争者的斗争中广泛使用这种蛋白质。许多脂蛋白已被批准用作药物。活性脂蛋白的共同点包括带正电荷和两亲结构,即它们有排斥脂肪的部分,也有排斥水的部分。这使它们能够与细菌膜结合,并穿透细菌膜进入内部。上海华东师范大学程义云领导的研究小组旨在通过用氟原子取代脂链中的氢原子来放大这种效应。这使得脂链同时具有憎水性(疏水性)和憎脂性(疏脂性)。它们特别低的表面能加强了与细胞膜的结合,而它们的疏脂性则破坏了膜的内聚力。研究小组利用氟化碳氢化合物和肽链合成了一个氟化脂肽谱系(物质库)。为了将两部分连接起来,他们使用了氨基酸半胱氨酸,通过二硫桥将它们结合在一起。研究人员通过测试这些分子对耐甲氧西林金黄色葡萄球菌(MRSA)的活性,对这些分子进行了筛选。MRSA是一种广泛存在的高危菌株,几乎对所有抗生素都有抗药性。他们发现最有效的化合物是"R6F",这是一种由六个精氨酸单位和由八个碳原子和十三个氟原子组成的脂质链构成的多氟脂肪肽。为了提高生物相容性,R6F被包裹在磷脂纳米颗粒中。在小鼠模型中,R6F纳米粒子对MRSA引起的败血症和慢性伤口感染非常有效。没有观察到任何毒副作用。纳米粒子似乎以多种方式攻击细菌:它们抑制重要细胞壁成分的合成,促进细胞壁的崩溃;它们还刺穿细胞膜并破坏其稳定性;破坏呼吸链和新陈代谢;增加氧化应激,同时破坏细菌的抗氧化防御系统。这些作用结合在一起,就能杀死细菌--其他细菌和MRSA。似乎不会产生抗药性。这些见解为开发治疗多重耐药细菌的高效荧光多肽药物提供了起点。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428428.htm手机版:https://m.cnbeta.com.tw/view/1428428.htm

相关推荐

封面图片

细菌迅速适应 新型抗生素也失去效力

细菌迅速适应新型抗生素也失去效力众所周知,阿比西丁能高效杀死细菌,包括超级细菌大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus或"GoldenStaph"),这种相对较新的抗生素被誉为抗生素耐药性问题的答案。然而,柏林自由大学(FreieUniversitätBerlin)研究人员的一项新研究发现,尽管这种抗生素很新,但常见的问题细菌已经通过基因扩增机制对阿霉素产生了抗药性。阿比西丁的作用模式与其他抗生素不同。它被称为肽抗生素,能抑制DNA回旋酶,这是帮助细菌进行DNA复制的重要酶。DNA回旋酶存在于细菌中,但不存在于人类中,因此它是一个很好的靶点。研究人员使用了一套广泛的工具来研究细菌对阿比西丁产生抗药性的机制,包括RNA测序、蛋白质分析、X射线晶体学和分子建模。他们发现,两种常见的人类感染相关细菌--鼠伤寒沙门氏菌和大肠杆菌--在接触浓度越来越高的涕灭威药物后产生了抗药性。他们发现,产生抗药性的原因是细菌细胞中STM3175基因的拷贝数增加了,随着细胞的繁殖,该基因的拷贝数在连续几代中不断扩大,产生了高达1000倍的抗药性。该基因编码一种能与阿比西丁相互作用的蛋白质,保护细菌免受抗生素的杀灭。研究人员还发现,相同的抗药性机制在无害细菌和致病细菌中都很普遍,包括可导致危及生命的伤口感染的弧菌和可导致肺炎和手术后血液感染的铜绿假单胞菌。抗生素耐药性是公共医疗保健领域日益关注的问题,据世界卫生组织(WHO)称,它是全球健康、粮食安全和发展面临的最大威胁之一。据《柳叶刀》杂志2019年的一篇文章报道,当年有127万人死于细菌抗生素耐药性。目前的研究让人们更好地了解了细菌对抗生素产生耐药性的内在机制;不幸的是,这项研究涉及的是一种相对较新的药物,这种药物被吹捧为解决上述耐药性的手段。不过,这项研究的发现可以为开发基于阿比西丁的抗生素疗法提供参考。该研究发表在《PLOSBiology》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1376913.htm手机版:https://m.cnbeta.com.tw/view/1376913.htm

封面图片

科学家发现新抗生素类别 可有效对抗耐药细菌

科学家发现新抗生素类别可有效对抗耐药细菌抗生素是现代医学的基础,在上个世纪极大地改善了全世界人民的生活质量。如今,我们往往认为抗生素是理所当然的,并严重依赖抗生素来治疗或预防细菌感染,例如,在癌症治疗、侵入性手术和移植过程中,以及在母亲和早产儿身上,抗生素可以降低感染风险。然而,全球抗生素耐药性的增加日益威胁着抗生素的有效性。为了确保未来能够获得有效的抗生素,开发不存在抗药性的新型疗法至关重要。乌普萨拉大学的研究人员最近在《美国国家科学院院刊》(ProceedingsoftheNationalAcademyofSciencesoftheUSA)上发表了他们的研究成果,介绍了作为多国联合体的一部分而开发的一类新型抗生素。他们描述的这类化合物以一种名为LpxH的蛋白质为靶标,这种蛋白质是革兰氏阴性细菌合成其最外层保护层(即脂多糖)的途径。并非所有细菌都会产生这一层,但那些会产生这一层的细菌包括世界卫生组织确定为最需要开发新型疗法的生物,其中包括已经对现有抗生素产生抗药性的大肠埃希菌和肺炎克雷伯菌。研究人员能够证明,这种新型抗生素对耐多药细菌具有很强的活性,并能治疗小鼠模型中的血液感染,从而证明了这种抗生素的前景。重要的是,由于这一类化合物是全新的,而LpxH蛋白尚未被用作抗生素的靶点,因此这一类化合物不会产生抗药性。这与目前临床开发中的许多"同类"抗生素形成了鲜明对比。虽然目前的研究结果很有希望,但在这类化合物进入临床试验之前,还需要做大量的工作。DOI:10.1073/pnas.2317274121编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428294.htm手机版:https://m.cnbeta.com.tw/view/1428294.htm

封面图片

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌这些讨厌的细菌是近年来医务人员最恼火的一些问题。这些细菌是鲍曼不动杆菌和铜绿假单胞菌,分别以引发肺炎和败血症而闻名。它们一直对抗生素有抗药性,使它们几乎无法治疗。这些耐抗生素的细菌一直是如此致命,以至于世界卫生组织将它们加入了"优先病原体"名单,这是一份急需新的抗生素治疗的病原体名单,因为它们对免疫系统受损的人构成了风险。不过,有了这个新发现,科学家们可能最终在这场持续的战斗中获得了优势。发表在《分子医学》上的这项研究发现,像糖精、醋磺酰胺-K和甜蜜素这样的人工甜味剂能抑制抗生素耐药菌的生长。特别是安赛蜜-K,证明在防止这些细菌发展生物膜方面特别有效,生物膜可以保护它们不受抗生素的影响。总的来说,这些甜味剂在减少细菌对普通抗生素的耐药性方面显示出有效性,使其更容易有效和高效地治疗这些细菌,即使使用较小剂量的抗生素。而且,由于这些人工甜味剂在大多数饮食和无糖食品中都很活跃,它们已经被广泛使用。麦卡锡说,开发新的抗生素往往需要数年甚至数十亿美元的时间。因此,在许多人用来喝咖啡的甜味剂中发现一种能够削弱抗生素耐药性细菌的化合物是令人兴奋的,也是治疗败血症和肺炎的一个巨大进步。像败血症和肺炎背后的细菌往往能迅速适应和应对药物,使它们对抗生素特别具有抗药性。这种抗药性在人类和动物身上自然发生,但当过度开药时,我们只是在升级这个问题。能够打击这些耐抗生素的细菌,最终可以帮助突破我们所知的一些最大的病原体威胁。...PC版:https://www.cnbeta.com.tw/articles/soft/1333719.htm手机版:https://m.cnbeta.com.tw/view/1333719.htm

封面图片

科学家开发出抗击耐药细菌的新型抗生素

科学家开发出抗击耐药细菌的新型抗生素苏黎世大学核磁共振设施负责人、化学家奥利弗-泽尔贝(OliverZerbe)说:"不幸的是,新抗生素的研发渠道相当空虚。自从上一种针对以前未使用过的靶分子的抗生素获得批准以来,已经过去了50多年。"在最近发表在《科学进展》(ScienceAdvances)上的一项研究中,泽尔贝现在讨论了一类高效抗生素的开发情况,这类抗生素能以新颖的方式对抗革兰氏阴性细菌。世卫组织将这类细菌列为极度危险的细菌。这类细菌由于具有双层细胞膜,因此抗药性特别强,例如耐碳青霉烯类肠杆菌。除了乌兹赫里大学的团队外,制药公司SpexisAG的研究人员也参与了这项由Innosuisse共同资助的合作研究。研究人员的研究起点是一种名为比他汀的天然肽,昆虫用它来抵御感染。比他汀能破坏革兰氏阴性细菌外膜和内膜之间重要的脂多糖运输桥梁,几年前,现已退休的哈佛大学教授约翰-罗宾逊(JohnRobinson)在一项研究中揭示了这一点。结果,这些代谢物在细胞内积聚,导致细菌死亡。然而,比他汀并不适合用作抗生素药物,原因之一是它的效力较低,而且细菌很快就会对它产生抗药性。因此,研究人员改变了比他汀的化学结构,以增强这种肽的特性。泽尔贝说:"要做到这一点,结构分析至关重要。为此,结构分析至关重要。"他的团队合成了细菌转运桥的各个组成部分,然后利用核磁共振(NMR)观察比他汀与转运桥结合的位置和方式,以及如何破坏转运桥。利用这些信息,SpexisAG公司的研究人员计划进行必要的化学修饰,以增强多肽的抗菌效果。除其他外,还进一步进行了突变,以提高分子的稳定性。合成肽随后在感染细菌的小鼠身上进行了测试,结果非常出色。泽尔贝说:"事实证明,这种新型抗生素非常有效,尤其是在治疗肺部感染方面。它们对耐碳青霉烯类肠杆菌也非常有效,而大多数其他抗生素在这方面都失效了"。此外,新开发的肽类药物对肾脏没有毒性或危害,而且在血液中长期保持稳定--所有这些特性都是获得药物批准的必要条件。不过,在开始首次人体试验之前,还需要进一步的临床前研究。在选择最有前景的多肽进行研究时,研究人员确保它们也能有效对抗那些已经对比萨丁产生抗药性的细菌。泽尔贝说:"我们相信,这将大大减缓抗菌药耐药性的产生。我们现在有望获得一类新的抗生素,这种抗生素对抗药性细菌也同样有效"。...PC版:https://www.cnbeta.com.tw/articles/soft/1372775.htm手机版:https://m.cnbeta.com.tw/view/1372775.htm

封面图片

微生物中提取的抗生素对新型超级细菌有杀灭效果

微生物中提取的抗生素对新型超级细菌有杀灭效果在开发这种抗生素的过程中,来自德国和美国的研究人员使用了一种名为iCHip的设备,这种设备可以让科学家培养出迄今为止被认为是"细菌暗物质"的细菌,或者是根本无法在实验室中培养的细菌。有趣的是,99%的细菌都属于这一类。iCHip是由一家名为NovoBioticPharmaceuticals的小型初创公司和波士顿东北大学的微生物学家KimLewis共同开发的。这次,该设备帮助研究人员找到了一种抗生素--由北卡罗来纳州的土壤微生物Eleftheriaterraesubspeciescarolina产生的Clovibactin。这些细菌产生的有效物质是为了攻击其他土壤微生物,从而帮助它们战胜其他土壤微生物。该研究的合著者、乌得勒支大学化学系研究员马库斯-温加斯(MarkusWeingarth)说:"Clovibactin与众不同。由于它是从以前无法生长的细菌中分离出来的,病原菌以前没有见过这种抗生素,没有时间产生抗药性。"这种抗生素一经发现,研究人员就着手研究它的工作原理。他们发现,这种抗生素的杀菌机制与目前的抗生素不同。它基本上是在细菌入侵者用来构建细胞壁的三种不同前体分子周围形成一个笼子。事实上,"Clovibactin"这个名字来源于希腊语中的"Klovi",意思是笼子,因为它的作用方式很新颖。目前的一些抗生素也是通过破坏细菌细胞壁来发挥作用的,而克洛维菌素的独特之处在于它能锁住这些被称为焦磷酸盐的分子。Weingarth说:"Clovibactin就像一个严实的手套一样包裹着焦磷酸盐。就像一个笼子把目标围了起来。由于Clovibactin只与目标中不变的、保守的部分结合,细菌将更难产生抗药性。事实上,我们在研究中没有观察到任何对Clovibactin的抗药性。"Clovibactin能够穿透耐抗生素超级细菌的防御系统,这一事实进一步增强了人们对它的希望,因为它在与细菌的斗争中又向前迈进了几步。当抗生素附着在有害细菌上时,它会发出丝状物,进一步结合并消灭细菌。它还会使细菌释放出一种被称为自溶酶的酶,进一步帮助细菌溶解自身细胞壁,从而自行消亡。该研究的合著者、德国波恩大学的塔尼娅-施奈德(TanjaSchneider)说:"Clovibactin的多靶点攻击机制可在不同位置同时阻断细菌细胞壁的合成。这提高了药物的活性,并大大增强了其对抗药性产生的稳健性"。在小鼠研究中,Clovibactin能有效对抗多种病原体,尤其是对革兰氏阳性菌,如引起常见医院感染的MRSA、葡萄球菌和链球菌,以及引起结核病等一系列疾病的其他入侵者。研究小组现在计划研究如何利用氯维巴坦的有效性,并表示这种抗生素还需要一段时间才能作为药物广泛使用,因为它必须经过临床试验和审批等常规途径。这项研究发表在《细胞》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1378835.htm手机版:https://m.cnbeta.com.tw/view/1378835.htm

封面图片

科学家开发出突破性新型抗生素“Cresomycin” 可躲避细菌抗药性

科学家开发出突破性新型抗生素“Cresomycin”可躲避细菌抗药性UIC生物科学副教授尤里-波利卡诺夫(YuryPolikanov)的研究小组与哈佛大学的同事建立了长期研究合作关系,最新发现了这种前景广阔的新型抗生素。UIC的科学家们提供了对细胞机制和结构的重要见解,帮助哈佛大学的研究人员设计和合成新药。在开发这种新型抗生素的过程中,该研究小组重点研究了许多抗生素是如何与一个共同的细胞目标--核糖体相互作用的,以及耐药细菌是如何改造它们的核糖体来保护自己的。波利卡诺夫说:"半数以上的抗生素都是通过干扰病原菌的蛋白质生物合成来抑制其生长的,这是一个由核糖体催化的复杂过程。抗生素与细菌核糖体结合,破坏了这种蛋白质制造过程,导致细菌入侵者死亡。"但是,许多细菌物种进化出了简单的防御措施来抵御这种攻击。其中一种防御方法是,它们在核糖体上添加一个由一个碳原子和三个氢原子组成的甲基,从而干扰抗生素的活性。科学家们推测,这种防御只是细菌在物理上阻塞了药物与核糖体结合的部位,"就像在椅子上放了个大头针",波利卡诺夫说。但他们发现了一个更复杂的状况,他们在最近发表于《自然-化学生物学》(NatureChemicalBiology)的一篇论文中对此进行了描述。研究人员通过使用一种名为X射线晶体学的方法,以近乎原子级的精度观察抗药性核糖体,他们发现了两种防御策略。他们发现,甲基不仅能物理阻断结合位点,还能改变核糖体内部"内脏"的形状,进一步破坏抗生素的活性。克服细菌防御随后,波利卡诺夫的实验室利用X射线晶体学研究了某些药物是如何规避这种常见的细菌抗药性的,其中包括2021年由UIC/哈佛大学合作发表在《自然》杂志上的一种药物。波利卡诺夫说:"通过确定抗生素与两种抗药性核糖体相互作用的实际结构,我们看到了现有结构数据或计算机建模无法预测的东西。看到一次总比听到一千次要好,我们的结构对于设计这种前景广阔的新型抗生素以及了解它如何设法摆脱最常见类型的抗药性非常重要。"新抗生素"Cresomycin"是人工合成的。它经过预先组织,可以避开甲基基团的干扰,强力附着在核糖体上,破坏核糖体的功能。这一过程包括将药物锁定为预先优化的形状,以便与核糖体结合,从而帮助它绕过细菌的防御。它只是与核糖体结合,就好像它并不关心是否存在这种甲基化,如此一来能轻松克服几种最常见的耐药性。Cresomycin的巨大潜力在哈佛大学进行的动物实验中,这种药物能防止金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌等常见致病菌耐多药菌株的感染。基于这些令人鼓舞的结果,下一步将对Cresomycin在人体中的有效性和安全性进行评估。即使在这一早期阶段,这一过程也证明了结构生物学在设计下一代抗生素和其他救命药物中的关键作用。波利卡诺夫说:"如果没有这些结构,我们就无法了解这些药物是如何与经过修饰的耐药性核糖体结合并发挥作用的。我们确定的结构让我们从根本上了解了这些药物逃避耐药性的分子机制。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419863.htm手机版:https://m.cnbeta.com.tw/view/1419863.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人