通过新的小鼠研究 “现成的”癌症免疫疗法渐行渐近

通过新的小鼠研究“现成的”癌症免疫疗法渐行渐近在传统的免疫疗法中,医生从病人体内提取免疫细胞,通过基因工程使其更有效地对抗癌症,然后将其输回病人体内,让它们发挥作用。虽然免疫疗法对某些类型的癌症很有希望,但这种疗法成本高、风险大,可能需要数周或数月的时间,这并不理想,因为许多病例的关键在于及时治疗。理想的情况是,免疫疗法能够普及,并能以大规模生产、分发和储存的形式在世界各地的医院中使用,像其他药物一样按需给病人用药。在这项新研究中,加州大学洛杉矶分校的科学家们可能已经找到了实现这一目标的途径。研究小组重点研究了γ-δT细胞,这是一种相对罕见的免疫细胞,曾在癌症免疫疗法中大显身手。γ-δT细胞最吸引人的特点之一是它们不需要来自同一个病人--它们可以从捐献者身上获取而不会引发免疫排斥反应。不过,它们的效果也不尽相同。在这种情况下,研究人员发现了一种生物标志物,可以帮助他们从供体中挑选出最佳候选者--一种名为CD16的表面蛋白。然后,这些γ-δ细胞被植入了两种有助于它们捕猎癌症的成分--嵌合抗原受体(CAR)和白细胞介素-15(IL-15)。这项研究的资深作者杨丽丽说:"这些高CD16的γ-δT细胞表现出独特的特征,提高了它们识别肿瘤的能力。它们显示出更高水平的效应分子,并具备对癌细胞产生抗体依赖性细胞毒性的能力。我们发现,通过使用CD16作为供体选择的生物标志物,我们可以提高它们的抗癌特性。"研究小组随后在卵巢癌模型上测试了这项技术,包括实验室培养皿中的人类细胞和小鼠。在动物试验中,接受了同时含有CAR和IL-15的γ-δ细胞的五只小鼠在整个180天的实验中都获得了完全缓解。相比之下,所有五只对照组小鼠都在第70天左右死于癌症,而那些只接受常规CART细胞疗法的小鼠则很快死于致命的免疫反应。接受γ-δT细胞治疗的小鼠体内含有CAR,但没有IL-15成分,五只小鼠中有两只在整个试验中存活下来,这表明两种成分一起使用效果最好。杨说:"这项研究成果揭示了这些高CD16的工程化γ-δT细胞的可行性、治疗潜力和显著的安全性。"我们希望这能成为未来治疗癌症的一种可行疗法。"这项研究发表在《自然-通讯》(NatureCommunications)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1396549.htm手机版:https://m.cnbeta.com.tw/view/1396549.htm

相关推荐

封面图片

实验性疫苗对癌症进行重新编程以发起免疫疗法攻击

实验性疫苗对癌症进行重新编程以发起免疫疗法攻击免疫疗法是一种新兴的治疗方法,它涉及为免疫系统增压以更好地对抗癌症,并取得了一些非常有希望的早期结果。最常见的一种免疫疗法是通过从病人身上取出T细胞,对它们进行编程以识别特定的癌症抗原,并让它们在体内释放,以猎杀带有这些抗原的癌症。问题是,这需要一定程度的猜测,以确定哪些抗原对每个病人最有用。因此,在新的研究中,斯坦福大学医学院的科学家们开发了一种方法,教导T细胞识别更广泛的抗原,增加病人的免疫系统成功攻击其癌症的机会。诀窍是将癌细胞转化为巨噬细胞,巨噬细胞是一种抗原提呈细胞(APC),可以教T细胞寻找什么。该研究的资深作者RaviMajeti说:"我们假设,也许被重新编程为巨噬细胞的癌细胞可以刺激T细胞,因为这些APC携带着它们来自癌细胞的所有抗原"。为了测试这个想法,研究人员诱导小鼠的白血病细胞转化为APCs。果然,对照组的小鼠成功清除了它们的癌症。更妙的是,该疫苗策略似乎能够长期发挥作用,防止疾病复发。Majeti说:"当我们第一次看到有免疫系统工作的小鼠清除白血病的数据时,我们被震惊了。我们无法相信它的效果如此之好。更重要的是,研究表明,免疫系统记住了这些细胞教给它们的东西。当我们在最初的肿瘤接种100多天后将癌症重新引入这些小鼠体内时,它们仍然有强烈的免疫反应来保护它们。"接下来,该团队在患有三种不同类型实体肿瘤--纤维肉瘤、乳腺癌和骨癌的小鼠身上测试了这项技术。结果并不像对白血病那样有效,但仍然显示出积极的效果。最后,研究人员用取自人类患者的细胞进行了实验。结果,来自人类白血病细胞的APCs似乎成功地教导来自同一病人的T细胞应该寻找什么。这表明该方法最终可以应用于人类,但仍需做更多工作。Majeti说:"重新编程的肿瘤细胞可以导致小鼠对癌症的持久和系统性攻击,并且与人类患者的免疫细胞有类似的反应。未来我们也许能够取出肿瘤细胞,将其转化为APC,并将其作为治疗性癌症疫苗回馈给患者。最终,我们可能能够将RNA注入患者体内,并转化足够的细胞,以激活免疫系统对抗癌症,而不必首先取出细胞。在这一点上,那是科幻小说,但那是我们感兴趣的方向"。该研究发表在《癌症发现》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1347939.htm手机版:https://m.cnbeta.com.tw/view/1347939.htm

封面图片

合成蛋白的调整可能发展出通用的癌症免疫疗法

合成蛋白的调整可能发展出通用的癌症免疫疗法抵抗癌细胞(中间)的免疫细胞(绿松石色)数量越多,肿瘤被根除的机会就越大。这就是为什么科学家们正在寻找给癌症患者注射额外免疫细胞的方法。人类的免疫系统是抵御疾病的强大前线,但不幸的是,癌症有一些暗箱操作的技术,帮助它隐藏和避免被破坏。免疫疗法是一种新兴的治疗方法,它将优势还给免疫系统,通过给病人的免疫细胞增压来寻找和摧毁肿瘤。通常情况下,该技术通过移除患者自身的免疫细胞,对其进行基因工程以更好地识别癌症,并将其送回体内。然而,这不仅需要时间--许多癌症患者没有足够的时间--而且如果患者的免疫系统不能胜任这项工作,这也不一定有效。理想情况下,免疫细胞可以从健康病人身上捐献出来,但这也带来了自己的复杂性。毕竟,免疫细胞是识别和攻击"外来"细胞的专家,这意味着捐赠的细胞往往最终会攻击接受者的健康细胞。在新的研究中,苏黎世联邦理工学院的团队发现了一种可能绕过这一问题的方法,为标准化的、现成的免疫疗法铺平了道路。科学家们瞄准了一种名为TCR-CD3的特定分子复合物,这种复合物存在于杀伤性T细胞的表面,并激活它们对特定的抗体--其中既包括癌症等所需的触发物,也包括健康细胞上不需要的抗体。该团队创造了一种合成版本的TCR-CD3复合物,它可以防止杀伤性T细胞攻击健康细胞,但仍允许它们进一步调整以针对癌细胞。到目前为止,在实验室进行的人类细胞测试似乎很有希望,没有危险免疫反应的迹象。虽然仍有很多工作要做,例如在人类患者身上进行测试,但该团队表示,这项研究最终可能导致一种标准化的、现成的癌症治疗产品,可以给任何患者使用,而不需要移除、设计和归还他们自己的免疫细胞。这将使其更便宜、更容易和更快地推广到病人身上。研究人员已经申请了专利,并计划成立一家分拆公司,帮助将该技术推向市场。...PC版:https://www.cnbeta.com.tw/articles/soft/1350239.htm手机版:https://m.cnbeta.com.tw/view/1350239.htm

封面图片

"开创性 "的研究基因编辑免疫细胞以针对癌症

"开创性"的研究基因编辑免疫细胞以针对癌症这项研究被一位研究报告的合著者描述为"有史以来在临床上尝试的最复杂的疗法",它首次将几种不同的尖端技术结合起来。这个过程首先从每个病人身上提取血液和肿瘤样本,目的是找出肿瘤所特有的DNA突变。一旦分离出癌症突变,研究人员就会使用新的算法来确定哪些特定的突变最有可能引发免疫T细胞的有效反应。然后每个病人提供更多的血液样本,从中研究免疫T细胞,以找到具有受体的特定细胞,这些受体最能针对所需的癌症突变目标。在一个平均需要至少六个月的复杂实验室工作的过程中,研究人员为每位患者确定了三种癌症特异性T细胞受体。然后,研究人员使用CRISPR基因编辑技术,对每位患者现有的T细胞进行改造,使其携带这些特定受体。这个最初的第一期安全试验招募了16名患者。只有两名患者在随后输注CRISPR编辑的T细胞时出现了不良反应,这两个案例的处理都没有大的问题。该试验主要被设计为剂量递增练习,以评估治疗的安全性。尽管如此,研究人员确实注意到16名参与者中的5人均表现出了肿瘤生长的减缓。该研究的共同作者AntoniRibas在接受《自然》杂志采访时说,试验中使用的剂量非常低,因此他相信随着技术的优化,疗效将在未来得到改善。"这项研究证明了分离和克隆识别癌细胞突变的多种免疫细胞受体的可行性,利用单步非病毒精确基因组编辑同时敲除内源性免疫受体和敲入重定向的免疫受体。"Ribas说:"以临床等级制造CRISPR工程T细胞,输注多达三种基因编辑的免疫细胞产品的安全性,以及基因编辑的免疫细胞对患者肿瘤的交通能力。"他总结了这一研究捆绑在一起的各种非凡的创新。与该研究无关的专家将该研究描述为"开创性"、"非凡"和"重要"。尽管临床反应有限,该研究是一个强大的概念证明,展示了一个潜在的未来,即免疫细胞可以通过基因改造来针对每个病人的特定癌症。伦敦癌症研究所的AsteroKlampatsa称这项研究提出的方法是"复杂的"和"令人鼓舞的"。但是Klampatsa确实指出了这种复杂的个性化疗法所面临的一个重大障碍--它不便宜也不容易生产。Klampatsa说:"......开发这种疗法所需的时间、劳动和费用是巨大的,而且有风险。观察这种疗法是否会被应用于更大的试验,在那里疗效,但也可以进一步测试实验方案,这将是很有趣的。"早在2020年研究人员就证明了将CRISPR编辑的免疫T细胞传递给一小批癌症患者的安全性。之前的研究对免疫细胞进行了通用的编辑,旨在提高它们针对肿瘤的能力。这项新的研究将这项工作推向了一个更加个性化的方向,证明了T细胞如何能够被设计成以病人的特定癌症为中心。但考虑到每位患者的定制T细胞疗法需要近六个月的时间,要将其转化为一种可扩展的治疗方法,还有大量的工作要做。负责开发该疗法的PACTPharma公司的首席科学官StefanieMandl相信,这一过程可以变得更加高效。Mandl在接受《时代》杂志采访时说,还有一个潜在的中间地带,即不同癌症之间普遍共享的一些T细胞受体靶点可能会导致一种半定制的治疗,而不是专门为每一位患者量身定制。Mandl补充说:"我们需要改善周转时间,提高整个过程的效率,而这是可以做到的。"这项新研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1332705.htm手机版:https://m.cnbeta.com.tw/view/1332705.htm

封面图片

突变混杂:为什么某些癌症免疫疗法并不总是如期奏效?

突变混杂:为什么某些癌症免疫疗法并不总是如期奏效?在这种因突变而导致DNA错配修复高度缺陷的结肠肿瘤中,T细胞(标记为黑色、绿色和红色)主要积聚在支持组织(粉红色区域)中,只有极少数渗入肿瘤细胞(被支持组织包围的岛屿)。图片来源:研究人员提供麻省理工学院的一项新研究揭示了一种可能的解释。在一项对小鼠的研究中,研究人员发现,测量肿瘤内突变的多样性比测量突变的总体数量更能准确预测治疗是否会成功。如果在临床试验中得到验证,这一信息将有助于医生更好地确定哪些患者将从检查点阻断抑制剂中获益。"免疫检查点疗法虽然在适当的情况下非常有效,但并非对所有癌症患者都有效。这项研究清楚地表明了癌症遗传异质性在决定这些疗法有效性方面的作用,"麻省理工学院科赫癌症研究所(KochInstituteforCancerResearch)成员、大卫-科赫生物学教授泰勒-杰克斯(TylerJacks)说。Jacks、Jacks实验室的前麻省理工学院博士后、现冷泉港实验室助理教授PeterWestcott和EMBL欧洲生物信息研究所(EMBL-EBI)研究小组组长IsidroCortes-Ciriano是这篇论文的资深作者,论文于9月14日发表在《自然-遗传学》(NatureGenetics)杂志上。突变的多样性在所有类型的癌症中,有一小部分肿瘤具有所谓的高肿瘤突变负荷(TMB),这意味着它们的每个细胞中都有非常多的突变。这些肿瘤中有一部分存在DNA修复缺陷,最常见的是DNA错配修复。由于这些肿瘤有如此多的突变蛋白,它们被认为是免疫疗法治疗的理想候选者,因为它们为T细胞提供了大量潜在的攻击目标。在过去几年中,FDA批准了一种名为pembrolizumab的检查点阻断抑制剂,这种抑制剂通过阻断一种名为PD-1的蛋白质来激活T细胞,用于治疗几种TMB较高的肿瘤。然而,随后对接受这种药物治疗的患者进行的研究发现,尽管他们的肿瘤具有较高的突变负荷,但其中一半以上的患者反应不佳或仅表现出短暂的反应。麻省理工学院的研究小组设计了小鼠模型,密切模拟高突变负荷肿瘤的发展过程,从而开始探索为什么有些患者的反应比其他患者好。这些小鼠模型携带有驱动结肠癌和肺癌发展的基因突变,以及一种在这些肿瘤开始发展时会关闭DNA错配修复系统的突变。这导致肿瘤产生许多额外的突变。当研究人员用检查点阻断抑制剂治疗这些小鼠时,他们惊讶地发现,这些小鼠对治疗都没有很好的反应。"我们验证了我们正在非常有效地使DNA修复途径失活,从而导致大量突变。"Westcott说:"这些肿瘤看起来就像人类癌症一样,但它们并没有更多地被T细胞浸润,也没有对免疫疗法产生反应。"肿瘤内异质性研究人员发现,缺乏反应似乎是一种称为瘤内异质性的现象造成的。这意味着,虽然肿瘤有很多突变,但肿瘤中每个细胞的突变往往与其他大多数细胞不同。因此,每种癌症突变都是"亚克隆"的,即在少数细胞中表达。(克隆"突变是指在所有细胞中都有表达)。在进一步的实验中,研究人员探索了改变小鼠肺部肿瘤异质性的情况。他们发现,在具有克隆突变的肿瘤中,检查点阻断抑制剂非常有效。然而,当他们通过混合具有不同突变的肿瘤细胞来增加异质性时,他们发现治疗效果变差了。Westcott说:"这向我们表明,瘤内异质性实际上干扰了免疫反应,只有在克隆性肿瘤中,才能真正获得强有力的免疫检查点阻断反应。"未能激活研究人员说,之所以会出现这种微弱的T细胞反应,似乎是因为T细胞根本没有看到足够多的特定癌蛋白或抗原就被激活了。当研究人员给小鼠植入含有亚克隆水平蛋白质的肿瘤时,这些蛋白质通常会诱发强烈的免疫反应,但T细胞却无法变得足够强大来攻击肿瘤。Westcott说:"你可以拥有这些具有强大免疫原性的肿瘤细胞,它们本应导致深刻的T细胞反应,但在这种低克隆水平下,它们就完全隐身了,免疫系统无法识别它们。T细胞识别的抗原数量不足,因此它们的启动不足,无法获得杀死肿瘤细胞的能力。"为了弄清这些发现是否可以推广到人类患者身上,研究人员分析了两项小型临床试验的数据,这些试验的对象是接受过检查点阻断抑制剂治疗的结直肠癌或胃癌患者。在分析了患者肿瘤的序列后,他们发现,肿瘤比较均匀的患者对治疗的反应更好。结论与启示Cortes-Ciriano说:"我们对癌症的认识在不断提高,这也为患者带来了更好的治疗效果。得益于先进的研究和临床研究,癌症确诊后的生存率在过去20年中有了显著提高。我们知道,每位患者的癌症都不尽相同,需要采取量身定制的方法。个性化医疗必须考虑到新的研究,这些研究正在帮助我们理解为什么癌症治疗对某些患者有效,而不是对所有患者有效"。研究人员说,这些发现还表明,用阻断DNA错配修复途径的药物治疗患者,希望产生更多T细胞可以靶向的突变,可能于事无补,反而可能有害。其中一种药物目前正在临床试验中。"如果试图使现有的癌症发生突变,在原发部位已经有许多癌细胞,而其他癌细胞可能已经扩散到全身,那么你就会创造出一个超级异质的癌症基因组集合。我们的研究结果表明,由于瘤内异质性很高,T细胞的反应很混乱,对免疫检查点疗法完全没有反应。"...PC版:https://www.cnbeta.com.tw/articles/soft/1386231.htm手机版:https://m.cnbeta.com.tw/view/1386231.htm

封面图片

癌症病魔遭遇“双重麻烦”:双效免疫疗法迎来突破

癌症病魔遭遇“双重麻烦”:双效免疫疗法迎来突破被称为PD-1抑制剂的癌症免疫疗法药物被广泛用于刺激免疫系统抗击癌症,但许多患者要么对这些药物没有反应,要么产生了抗药性。正在早期临床试验中测试的一种新型小分子候选药物旨在改善患者对免疫疗法的反应。科学家们今天(10月4日)发表在《自然》(Nature)杂志上的一项研究表明,这种小分子药物通过两种不同的机制来减缓肿瘤生长并提高实验动物的存活率。麻省理工学院和哈佛大学布罗德研究所(BroadInstituteofMITandHarvard)肿瘤免疫疗法发现引擎(TIDE)、艾伯维公司(AbbVie)和卡里科生命科学公司(CalicoLifeSciences)的研究人员报告说,这种分子同时使肿瘤对免疫攻击更加敏感,并提高免疫细胞的活性,从而在小鼠体内对抗肿瘤。机理与发现这种分子通过阻断PTPN2和PTPN1蛋白起作用,这两种蛋白通常会关闭细胞感知激活免疫细胞信号的能力。研究人员发现,通过抑制PTPN2/N1,该分子能使称为T细胞和NK细胞的免疫细胞更有效地杀死肿瘤细胞,同时也使肿瘤细胞更容易受到攻击。阻断PTPN2/N1还有助于减少T细胞衰竭,T细胞衰竭是T细胞功能紊乱的一种类型,被认为是某些癌症免疫疗法耐药性的根源。与包括PD-1药物在内的其他癌症免疫疗法相比,这种分子的双重作用机制--同时靶向肿瘤细胞和免疫细胞--是独一无二的,研究人员认为这可以解释为什么这种分子在动物模型中如此有效,甚至可能不需要与抗PD-1疗法等其他药物联合使用。艾伯维和Calico在2017年发现了这种名为ABBV-CLS-484的分子,此前,布罗德大学的泰达研究人员发现PTPN2基因是一种很有前景的癌症免疫疗法靶点。目前,艾伯维和Calico正在对该分子和另一种同样由艾伯维和Calico开发的相关分子进行1期临床试验。专家评论罗伯特-曼古索(RobertManguso)说:"这是评估免疫反应如何发挥作用的一个前所未有的机会,在临床研究中进一步探索这一信号通路的能力确实非常重要"。他是这项研究的共同第一作者、布罗德大学的副教授、麻省总医院癌症研究中心和哈佛医学院的助理教授。曼古索和凯瑟琳-耶茨(KathleenYates)在布罗德大学共同领导着TIDE项目,该项目利用CRISPR筛选和其他工具在动物身上系统地发现PTPN2等基因,癌症利用这些基因逃避免疫疗法。TIDE的高级研究科学家HakimehEbrahimi-Nik和艾伯维公司的高级首席研究科学家ChristinaBaumgartner是这项研究的共同第一作者。除了Manguso和Yates之外,艾伯维的研究员JenniferFrost和艾伯维全球药物化学副总裁PhilipKym也与Calico的科学家合作共同领导了这项研究。"我们从2017年发现一个靶点,到2020年开始在患者身上测试药物,这仍然让我有点目瞪口呆,"耶茨说。"利用这些合作关系、资源、CRISPR等技术以及艾伯维的药物化学的能力--这一切因素的汇聚,感觉就像一个快进键。""发现一种有可能改变人们生活的机制是药物发现科学家最令人兴奋和最有价值的部分之一,"鲍姆加特纳说。"我们每天都带着紧迫感和奉献精神工作,因为我们知道病人正在等待着我们。通过与我们在Calico和Broad的合作伙伴合作,我们能够快速发现、表征和开发这些创新分子。""确定针对磷酸酶类药物活性位点的口服生物可用性小分子疗法是一项重大挑战。事实上,制药行业以前针对活性位点磷酸酶抑制剂的工作并不成功,因此普遍认为这是一类'不可药用'的靶点,"Kym补充说。"因此,看到联合发现团队的合作工作成功地推出了这个一流的临床候选药物,我们感到非常兴奋。""Calico公司、布罗德研究所和艾伯维公司三方的合作表明,学术界的最佳特点与工业界的最佳特点相结合,能够加速科学进步--在这种情况下,将早期生物学和靶点发现转化为临床化合物,这是已知的第一种活性位点磷酸酶抑制剂,"Calico公司肿瘤学新靶点开发主管、合著者MarciaPaddock说。控制癌症2017年,在一项后来成为TIDE基础的实验中,Manguso和包括W.NicholasHaining(当时在Dana-Farber癌症研究所工作,现就职于ArsenalBio)在内的研究人员系统地梳理了小鼠体内近2400个癌症基因,寻找那些能使黑色素瘤肿瘤对PD-1抑制剂治疗更敏感或不敏感的基因。他们锁定了PTPN2基因,发现删除该基因会使肿瘤细胞对抗PD-1疗法更加敏感。不过,Manguso和Yates还有另一个充满希望的理由:PTPN2在T细胞中高度表达,之前的研究表明,删除它有助于激活这些细胞,从而提高它们控制肿瘤的能力。PTPN2和一个密切相关的基因PTPN1都编码磷酸酶,它们能抑制一种名为JAK-STAT的重要免疫途径中的信号转导。然而,由于这些磷酸酶带有很强的电荷,制药公司一直在努力制造能与磷酸酶活性位点结合的抑制剂。这意味着与它们结合的药物也必须带强电荷,使它们难以穿过细胞膜进入细胞。Manguso说:"文献中有证据表明这将是非常困难的,但艾伯维以一种非常无畏的方式解决了这个问题。这种乐观的文化对项目的最终成功非常重要。"艾伯维的科学家们成功地设计出了一种小分子,它能进入细胞并与PTPN2和PTPN1磷酸酶结合。与未接受治疗的动物相比,接受该分子治疗的动物肿瘤生长速度更慢,存活时间更长,这表明ABBV-CLS-484与其他许多新兴免疫疗法不同,可能会自行发挥作用。研究小组还发现,同时使用该分子和一种抗PD-1药物治疗的小鼠显示出更大的益处,这表明该分子可能会与其他免疫疗法联合用于患者。详细的作用机制在布罗德大学的易卜拉希米-尼克和艾伯维公司的鲍姆加特纳的领导下,研究人员与Calico公司的科学家们一起发现了该药物的作用机制,这或许可以解释为什么该药物在实验动物身上如此有效。他们发现,抑制肿瘤细胞中的PTPN2和PTPN1会使细胞更容易受到免疫细胞产生的某些细胞杀伤信号的影响,也会使抗癌的NK和T细胞在动物肿瘤和人体血液样本中更加活跃。此外,ABBV-CLS-484似乎还能减少T细胞的衰竭。用这种分子处理过的T细胞能保持功能和分裂,有助于控制癌症的生长,即使是在T细胞通常难以发挥作用的情况下,如免疫细胞浸润不明显或已扩散到身体其他部位的肿瘤中。研究人员发现,ABBV-CLS-484会导致JAK-STAT信号的增加,这可能有助于保持T细胞的活性,防止它们衰竭。Ebrahimi-Nik说,在其他免疫疗法(包括抗PD-1药物)中还没有观察到这种对T细胞的强烈影响。她说:"当我们用我们的抑制剂治疗动物时,我们观察到肿瘤中的特定CD8+T细胞群更加活跃--它们更有效、更增殖、更少衰竭。我们对此印象深刻。"泰达研究人员目前正与来自艾伯维、Calico和其他团队的科学家合作,设计新一阶段的临床试验,并确定患者对ABBV-CLS-484反应的标志物。Yates说:"消除对这些T细胞中JAK-STAT信号传导的抑制,使它们成为极其有效的前线战士,同时也大大减少了T细胞的衰竭。据我们所知,以前还没有人用小分子免疫疗法观察到这种情况。我们非常期待了解这将如何改善患者的反应。"...PC版:https://www.cnbeta.com.tw/articles/soft/1388053.htm手机版:https://m.cnbeta.com.tw/view/1388053.htm

封面图片

研究人员解开尖端CAR-T细胞疗法后癌症病情会长时间缓解的原因

研究人员解开尖端CAR-T细胞疗法后癌症病情会长时间缓解的原因研究人员在用于治疗儿童白血病的CART细胞中发现了一种基因特征,它能显示长期疗效。这一突破为优化治疗方法、了解哪些患者反应最佳以及提高长期缓解效果带来了希望。最近发表在《自然-医学》(NatureMedicine)杂志上的这项联合研究将最前沿的免疫疗法设计知识与最先进的计算分析技术相结合,确定了长期最有效的CAR-T细胞基因特征。近年来,CAR-T细胞--针对白血病设计的基因工程T细胞(一种免疫细胞)--已成为治疗复发或无法治愈的罕见白血病(B细胞急性淋巴细胞性白血病或BALL)患儿的既定治疗方案。决定治疗是否会导致白血病的长期缓解--让儿童不再患癌--的关键因素之一是CAR-T细胞在体内的存活时间。到目前为止,人们对这些细胞在体内的存活时间还知之甚少,因此也不知道这种疗法是否有可能在不进行进一步治疗的情况下长期发挥作用。作为CARPALL研究的一部分,来自大奥蒙德街医院(GOSH)、惠康桑格研究所(WellcomeSangerInstitute)和UCL大奥蒙德街儿童健康研究所(UCLGOSICH)的一个合作研究小组在CAR-T细胞治疗(称为AUTO1)后的数年中与患者家庭一起工作,开始了解为什么有些CAR-T细胞会长期存在于体内。这项工作为了解为什么一些CAR-T细胞会长期存在提供了第一块基石。研究小组的目标是在该项目发现的特征基础上,确定细胞群中的关键标志物,并最终了解是否有办法在治疗开始前发现甚至创造出能长期存在的CAR-T细胞。论文第一作者、威康桑格研究所玛丽-斯克洛多夫斯卡-居里研究员纳撒尼尔-安德森(NathanielAnderson)博士说:"通过尖端的单细胞基因组学研究,我们首次非常清晰地破解了儿童CAR-T细胞的持久性密码。我们希望我们的研究能提供第一条线索,让我们知道为什么有些CAR-T细胞能持续很长时间--我们知道这对保持儿童在治疗后不再罹患癌症至关重要。最终,这项工作将帮助我们继续改进这种已经改变了生命的治疗方法"。共同第一作者、GOSH儿童血液学顾问、UCLGOSICH荣誉高级临床讲师SaraGhorashian博士说:"这项数据首次向我们展示了长效CAR-T细胞的特点,这种细胞不仅能治愈我们研究中的ALL患儿,还能治愈使用不同CAR-T细胞产品治疗不同类型白血病的成人。因此,这让我们相信,该特征可能会更普遍地揭示CAR-T细胞的持久性机制,并让我们开发出更好的治疗方法。我们要感谢所有使我们这样的研究成为可能的儿童和家庭--只有通过他们的奉献,我们才能建立起对这些新疗法的理解,并为全世界的儿童提供更好的治疗"。深入研究CAR-T细胞研究小组能够对参加开创性临床试验(CARPALL试验)的10名儿童的细胞进行研究,这些儿童在接受最初的CAR-T细胞治疗长达五年后仍在接受治疗。这让他们对为什么有些CAR-T细胞会留在患者的血液中,而另一些则会提前消失,这让研究人员在某些情况下会导致癌症复发的现象上有了新的认识。科学家们利用从基因层面分析单个细胞以了解其作用的技术,在长效CAR-T细胞中发现了一种独特的"特征"。该特征表明,血液中的长效CAR-T细胞会转变成一种不同的状态,使它们能够继续在患者体内清除癌细胞。重要的是,这种特征在不同细胞、不同患者以及使用不同CAR-T细胞产品治疗不同类型白血病的成人身上都能看到。但在其他类型的免疫细胞中却没有发现。这表明,作者发现的特征可能不仅是这些长效细胞的标记,而且实际上可能是它们在体内持续存在的原因,并使儿童的病情得到更长时间的缓解。作为研究的一部分,研究人员确定了CAR-T细胞中似乎能使它们在体内长期存在的关键基因。重要的是,这些基因将为今后的研究提供一个起点,以确定CAR-T细胞产品在制造过程中的持久性标记,并最终提高它们的有效性。该研究的共同第一作者、小组负责人、惠康桑格研究所惠康高级研究员、剑桥Addenbrooke医院儿科肿瘤名誉顾问SamBehjati博士说:"这项研究是我们在了解CAR-T细胞持久性方面向前迈出的精彩一步,说明了合作科学的力量,以及将开创性临床研究与尖端基因组科学相结合的力量。我们必须在这些新疗法的基础上继续开发和发展,以帮助全世界更多的白血病患儿。"研究家庭的奉献精神这样的研究之所以能够进行,离不开参与研究的儿童和家庭的奉献精神。为了让科学家们研究细胞的长期存活性,孩子们必须在接受初次治疗后的五年内继续为研究捐献细胞。奥斯汀两岁时被诊断出患有BALL,到八岁时,他已经经历了三次复发和广泛的治疗,包括两次骨髓移植。第四次复发时,他已经用尽了所有常规治疗方案。2016年10月,作为CARPALL临床试验的一部分,奥斯汀接受了CAR-T细胞输注。六年多过去了,现年14岁的奥斯汀仍然没有癌症,他的血液中还能检测到长效CAR-T细胞。他是自输液以来一直为这项研究捐献样本的10名儿童之一。他的父亲斯科特说:"毫不夸张地说,如果没有这项研究,奥斯汀就不会活着。GOSH的研究团队给了我们很多,我们也想有所回报。参加这项研究不仅给了我们这个机会,我们还希望奥斯汀的数据将来能帮助其他像我们这样的家庭。事实上,我们很喜欢回到GOSH来看我们的团队,让他们成为我们生活的一部分。我为奥斯汀能参与这次研究之旅感到非常自豪"。对研究的持续投入有助于研究人员更好地了解新的前沿疗法,并为未来的家庭改进这些疗法。英国癌症研究中心(CancerResearchUK)的研究信息经理亨利-斯滕内特(HenryStennett)博士说:"我们知道,CAR-T细胞疗法等免疫疗法多年来取得了巨大成功,但并非对所有患者都有效,我们需要继续努力找出原因。像这样的研究对于让我们更接近让免疫疗法对更多癌症患者更有效至关重要。"...PC版:https://www.cnbeta.com.tw/articles/soft/1378331.htm手机版:https://m.cnbeta.com.tw/view/1378331.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人