研究人员发现了导致冷感的蛋白质 长期未解之谜迎刃而解

研究人员发现了导致冷感的蛋白质长期未解之谜迎刃而解麻省大学生命科学研究所教授、新研究的资深作者、神经科学家肖恩-徐(ShawnXu)说:"20多年前,随着一种名为TRPV1的热感应蛋白的发现,这一领域开始发现这些温度传感器。各种研究都发现了能感知高温、暖气甚至低温的蛋白质,但我们一直无法确认是什么能感知华氏60度以下的温度"。在2019年的一项研究中,徐的实验室的研究人员在秀丽隐杆线虫体内发现了首个冷感受体蛋白,秀丽隐杆线虫是一种身长一毫米的蠕虫,徐的实验室将其作为了解感官反应的模型系统进行研究。由于编码秀丽隐杆线虫蛋白质的基因在包括小鼠和人类在内的许多物种中都是进化保守的,这一发现为验证哺乳动物中的冷传感器提供了一个起点:一种名为GluK2(谷氨酸离子受体kainate型亚基2的缩写)的蛋白质。在这项最新研究中,来自生命科学研究所和麻省大学文学、科学和艺术学院的研究小组在缺少GluK2基因、因而无法产生任何GluK2蛋白的小鼠身上测试了他们的假设。通过一系列测试动物对温度和其他机械刺激的行为反应的实验,研究小组发现,小鼠对高温、暖气和低温的反应正常,但对有害的寒冷却没有反应。GluK2主要存在于大脑中的神经元上,它接收化学信号,促进神经元之间的交流。但它也在外周神经系统(大脑和脊髓之外)的感觉神经元中表达。麻省大学分子、细胞和发育生物学副教授、该研究的共同第一作者段博说:"我们现在知道,这种蛋白质在外周神经系统中发挥着完全不同的功能,它处理温度线索,而不是感知寒冷的化学信号。"虽然GluK2因其在大脑中的作用而闻名,但徐推测,这种温度感应作用可能是这种蛋白质的原始用途之一。"GluK2基因在整个进化树中都有亲缘关系,一直可以追溯到单细胞细菌。但它非常需要感知环境,也许既需要温度,也需要化学物质,"身兼麻省理工大学医学院分子和综合生理学教授的徐说。"因此,我认为温度感应可能是一种古老的功能,至少对其中一些谷氨酸受体来说是如此,随着生物进化出更复杂的神经系统,这种功能最终被采用。"除了填补温度感应难题的空白,徐认为这项新发现还可能对人类的健康和福祉产生影响。例如,接受化疗的癌症患者常常会对寒冷产生痛苦的反应。GluK2是哺乳动物体内的一种冷传感器,这一发现为更好地理解人类为何会对寒冷产生疼痛反应开辟了新的途径,甚至可能为治疗冷觉过度兴奋患者的疼痛提供了潜在的治疗靶点。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425342.htm手机版:https://m.cnbeta.com.tw/view/1425342.htm

相关推荐

封面图片

研究人员发现了一种控制梳状水母独特运动的蛋白质

研究人员发现了一种控制梳状水母独特运动的蛋白质栉水母,从海洋表面到海洋深处都可以找到。这些海洋捕食者的特征是沿着它们的侧面有八条明亮的、彩虹色的波纹带。这些带子是由一排排梳子一样排列的薄片组成的,上面有数以万计的被称为纤毛的微小头发状结构。梳状水母通过这些梳状板的跳动而在水中推进。纤毛的同步波浪式运动使周围的光线散射开来,从而形成一道色彩斑斓的彩虹。作者KazuoInaba教授说:"纤毛被捆绑在一起的结构被称为隔层膜(CL)。这些薄片被认为对纤毛的定向和同步运动很重要。在以前的一项研究中,我们发现了一种叫做CTENO64的蛋白质,它是纤毛定向所需要的,但它只在CL的一个部分被发现。我们仍然没有完全理解梳状板的整体结构。"梳状板被分为两个不同的区间:近端和远端。有了CTENO64被发现在近端区间的知识,为了更好地了解CL的分子组成,研究人员检查了整个梳状板上发现的整个蛋白质。他们确定了那些既丰富又只在梳状板细胞中显示基因表达的蛋白质。搜索工作阐明了21种蛋白质,包括一种新检测到的名为CTENO189的蛋白质,它存在于CL的一个与CTENO64不同的区域。"当我们敲除这个新发现的蛋白的基因时,CL在梳状板的远端区域根本没有出现,"Inaba教授解释说。"对结构的仔细观察表明,虽然梳状板形成正常,但纤毛处于混乱状态,正常的波状运动模式消失了。"这些研究共同表明,CL的两个不同区域在控制梳状果冻的运动方面发挥着不同的作用。近端CL提供了一个强大的建筑基础,而远端CL确保纤毛之间实现弹性连接。在CL中发现的这些蛋白质共同维持着涟漪状的运动,推动着梳状水母在其海洋环境中运动。...PC版:https://www.cnbeta.com.tw/articles/soft/1334459.htm手机版:https://m.cnbeta.com.tw/view/1334459.htm

封面图片

研究人员设计“纳米陷阱” 提供有关蛋白质团块的新见解

研究人员设计“纳米陷阱”提供有关蛋白质团块的新见解图片显示的是蛋白质捕获器,它由纳米级腔室和聚合物组成,在上方形成门。这些"门"通过将温度升高约10度来打开。然后,聚合物会改变形状,变成更紧凑的状态,这样蛋白质就可以进出了。资料来源:查尔默斯理工大学朱莉娅-耶尔勒巴克领导该研究项目的查尔姆斯大学教授安德烈亚斯-达林(AndreasDahlin)说:"我们相信,我们的方法具有巨大的潜力,可以加深人们对许多不同疾病的早期和危险过程的了解,并最终帮助人们了解如何用药物来对抗这些疾病。"在人体内形成团块的蛋白质会导致多种疾病,包括渐冻人症、老年痴呆症和帕金森症。如果能更好地了解凝块是如何形成的,就能找到有效的方法在早期将其溶解,甚至完全防止其形成。AndreasDahlin,查尔姆斯理工大学化学与化学工程系教授。图片来源:查尔默斯理工大学MikaelTerfors如今,有各种技术可以研究过程的后期阶段,即团块变大并形成长链的阶段,但直到现在,还很难跟踪早期的发展,因为那时它们还非常小。现在,这些新的捕集器可以帮助解决这个问题。可长时间进行高浓度研究研究人员将他们的工作描述为世界上最小的闸门,只需按下按钮就能打开和关闭。这些门成为陷阱,将蛋白质锁在纳米级的腔室中。蛋白质无法逃脱,从而将在这一水平上观察蛋白质的时间从一毫秒延长到至少一小时。这种新方法还可以在很小的体积内封闭几百个蛋白质,这对进一步了解情况非常重要。"我们希望看到并更好地理解的团块由数百个蛋白质组成,因此如果我们要研究它们,就必须能够捕获如此大量的蛋白质。"AndreasDahlin说:"小体积内的高浓度意味着蛋白质会自然地相互碰撞,这是我们新方法的一大优势。"为了将这种技术用于研究特定疾病的病程,还需要继续开发这种方法。"捕获器需要进行调整,以吸引与你感兴趣的特定疾病相关的蛋白质。"AndreasDahlin说:"我们现在的工作是规划哪些蛋白质最适合研究。"新陷阱的工作原理研究人员开发的捕集器由所谓的聚合物刷组成,位于纳米级腔室的口部。要研究的蛋白质包含在液体溶液中,经过特殊化学处理后被吸引到腔室壁上。当闸门关闭时,蛋白质就会脱离腔壁,开始相互移动。在捕集器中,您可以研究单个的蛋白质团块,这比同时研究许多蛋白质团块能提供更多信息。例如,团块可能由不同的机制形成,具有不同的大小和结构。只有逐个分析才能观察到这些差异。实际上,蛋白质可以在捕集器中保留几乎任意长的时间,但目前,时间受到化学标记保留时间的限制。在这项研究中,研究人员成功地将可见性保持了一个小时。...PC版:https://www.cnbeta.com.tw/articles/soft/1398913.htm手机版:https://m.cnbeta.com.tw/view/1398913.htm

封面图片

哈佛大学科学家发现了一种此前未知的细胞分解蛋白质的方式

哈佛大学科学家发现了一种此前未知的细胞分解蛋白质的方式在一次跨部门合作中,哈佛大学医学院的研究人员发现了一种名为midnolin的蛋白质,它在降解许多短寿命核蛋白的过程中发挥着关键作用。研究表明,midnolin是通过直接抓住蛋白质并将其拉入细胞废物处理系统--蛋白酶体,并将其破坏。科学家发现了一种细胞降解不需要的蛋白质的新方法,这些蛋白质会影响重要的神经、免疫和发育基因。这一发现可能有助于治疗由细胞中蛋白质失衡引起的疾病。研究结果最近发表在《科学》杂志上。共同第一作者、哈佛医学院神经生物学研究员XinGu说:"这些特殊的短寿命蛋白质已经为人所知40多年了,但没有人确定它们究竟是如何降解的。"由于在这一过程中被分解的蛋白质会调节与大脑、免疫系统和发育有关的重要功能基因,科学家们最终可能会将这一过程作为控制蛋白质水平的目标,从而改变这些功能并纠正任何功能障碍。"我们发现的机制非常简单,而且相当优雅,"共同第一作者、HMS遗传学博士候选人ChristopherNardone补充说。"这是一项基础科学发现,但对未来有很多影响。"众所周知,细胞可以通过用一种叫做泛素的小分子标记蛋白质来分解蛋白质。标签会告诉蛋白酶体不再需要这些蛋白质,从而将其破坏。已故的弗雷德-戈德堡(FredGoldberg)在哈佛医学院完成了这一过程的大部分开创性研究。然而,有时蛋白酶体分解蛋白质时不需要泛素标签的帮助,这让研究人员怀疑存在另一种不依赖泛素的蛋白质降解机制。Nardone说:"文献中有零星证据表明,蛋白酶体能以某种方式直接降解无标记的蛋白质,但没有人明白这是如何发生的。"有一类蛋白质似乎是通过另一种机制降解的,那就是刺激诱导转录因子:这些蛋白质在细胞受到刺激后迅速生成,并进入细胞核打开基因,然后迅速被破坏。Gu说:"一开始,让我印象深刻的是,这些蛋白质极不稳定,它们的半衰期很短--一旦产生,它们就会发挥功能,之后很快就会被降解。"哈佛医学院布拉瓦特尼克研究所内森-马什-普西(NathanMarshPusey)神经生物学教授迈克尔-格林伯格(MichaelGreenberg)与哈佛医学院和布里格姆妇女医院格雷戈尔-孟德尔(GregorMendel)遗传学和医学教授斯蒂芬-埃利奇(StephenElledge)是这篇论文的共同第一作者。从少数到数百为了研究这一机制,研究小组从两个熟悉的转录因子入手:格林伯格实验室对Fos和EGR1进行了广泛研究,前者在学习和记忆中发挥作用,后者则参与细胞分裂和存活。研究人员利用埃利奇实验室开发的复杂蛋白质和基因分析方法,锁定了midnolin这种有助于分解这两种转录因子的蛋白质。后续实验发现,除了Fos和EGR1,midnolin还可能参与分解细胞核中的数百种其他转录因子。Gu和Nardone回忆说,他们对自己的研究结果感到震惊和怀疑。为了证实他们的发现,他们决定要弄清楚midnolin究竟是如何靶向和降解如此多不同的蛋白质的。Nardone说:"当我们确定了所有这些蛋白质之后,关于midnolin机制究竟是如何工作的还有许多令人费解的问题。"借助一种名为AlphaFold的机器学习工具(可预测蛋白质结构),再加上一系列实验室实验的结果,研究小组得以充实这一机制的细节。他们发现,midnolin有一个"捕捉结构域"--该蛋白质的一个区域可以捕捉其他蛋白质,并将它们直接送入蛋白酶体,在蛋白酶体中被分解。这个"捕捉结构域"由两个独立的区域组成,这两个区域通过氨基酸连接在一起(就像一根绳子上的手套),能抓住蛋白质中一个相对非结构化的区域,从而使midnolin能够捕捉多种不同类型的蛋白质。值得注意的是像Fos这样的蛋白质负责开启基因,促使大脑中的神经元根据刺激进行接线和重新接线。IRF4等其他蛋白质通过确保细胞能够制造功能性B细胞和T细胞,激活支持免疫系统的基因。埃利奇说:"这项研究最令人兴奋的地方在于,我们现在了解了一种不依赖泛素化的降解蛋白质的新的通用机制。"诱人的转化潜力在短期内,研究人员希望更深入地研究他们发现的机制。他们正计划进行结构研究,以更好地了解midnolin如何捕获和降解蛋白质的细节。他们还在制造缺乏midnolin的小鼠,以了解这种蛋白质在不同细胞和发育阶段的作用。科学家们说,他们的发现具有诱人的转化潜力。它可能提供一种途径,研究人员可以利用它来控制转录因子的水平,从而调节基因表达,进而调节体内的相关过程。格林伯格说:"蛋白质降解是一个关键过程,它的失调是许多失调和疾病的基础,包括某些神经和精神疾病,以及一些癌症。"例如,当细胞中Fos等转录因子过多或过少时,可能会出现学习和记忆问题。在多发性骨髓瘤中,癌细胞会对免疫蛋白IRF4上瘾,因此它的存在会助长这种疾病。研究人员尤其感兴趣的是,找出哪些疾病可能是开发通过mindolin-蛋白酶体途径发挥作用的疗法的理想候选者。Gu说:"我们正在积极探索的一个领域是如何调整该机制的特异性,以便它能特异性地降解感兴趣的蛋白质。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379781.htm手机版:https://m.cnbeta.com.tw/view/1379781.htm

封面图片

揭开大脑疾病的秘密:当蛋白质陷入固态时

揭开大脑疾病的秘密:当蛋白质陷入固态时研究人员利用先进的光学技术研究了与神经退行性疾病相关的蛋白质聚集体的形成。通过分析一种与渐冻症有关的蛋白质,他们对蛋白质从液态到固态的转变有了前所未有的深入了解,从而揭示了阿尔茨海默氏症和渐冻症等疾病的真相。上图是显示蛋白质凝结相互作用的纳米扫描图像。资料来源:悉尼大学这种液态到固态的转变会引发所谓的淀粉样纤维的形成。淀粉样纤维可在神经元中进一步形成斑块,导致神经退行性疾病,如阿尔茨海默氏症。悉尼大学的生物医学工程师与剑桥大学和哈佛大学的科学家合作,现已开发出精密的光学技术,可近距离监测这些蛋白质聚集体的形成过程。通过测试一种与肌萎缩性脊髓侧索硬化症(ALS)有关的蛋白质,悉尼大学的工程师们密切监测了这种蛋白质从液相到固相的转变过程。三维共聚焦显微镜扫描培养24小时的FUS蛋白质凝结物,显示了这项研究揭示的特征性核壳结构。资料来源:悉尼大学这项研究发表在美国《国家科学院院刊》(PNAS)上,其主要作者沈怡博士说:"这是从基础角度理解神经退行性疾病如何发展的巨大进步。"生物医学工程学院高级讲师、悉尼大学纳米研究所成员DanieleVigolo博士说:"我们现在可以在纳米尺度(百万分之一米)上直接观察到这些关键蛋白质从液态向固态的转变。蛋白质在液-液相分离过程中经常会形成凝结物,这种凝结物广泛存在于关键和健康的生物功能中,例如人类胚胎的形成。这一过程有助于蛋白质浓度至关重要的生化反应,还能促进健康的蛋白质-蛋白质相互作用。"Vigolo和沈的研究团队。资料来源:悉尼大学沈博士是化学与生物分子工程学院(SchoolofChemicalandBiomolecularEngineering)的ARCDECRAFellow,同时也是悉尼纳米研究中心(SydneyNano)的成员。"这可能导致与神经退行性疾病相关的异常结构,因为蛋白质不再表现出快速还原成液态的能力。因此,监测凝结动态至关重要,因为它们会直接影响病理状态,"她说。世界上首次对这一过程进行的纳米级光学观测使研究小组得以确定,从液态到固态蛋白质的转变始于蛋白质凝聚物的界面。这个相变窗口还揭示了这些蛋白质团聚体的内部结构是异质的,而以前人们认为它们是均质的。Vigolo博士说:"我们的发现有望从根本上大大提高我们对神经退行性疾病的认识。这意味着一个充满希望的新研究领域,可以让我们更好地了解阿尔茨海默病和渐冻症是如何在大脑中发展的,这些疾病影响着全球数百万人。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379653.htm手机版:https://m.cnbeta.com.tw/view/1379653.htm

封面图片

新研究发现与免疫系统疾病有关的关键蛋白质

新研究发现与免疫系统疾病有关的关键蛋白质T细胞善于识别引发免疫反应的外来分子(抗原),并做出有针对性的反应来消灭细菌和病毒等病原体。这项发表在《免疫学杂志》上的研究调查了STAP-1如何影响免疫反应。研究人员发现,STAP-1是一种中间体,能促进细胞内不同蛋白质之间的交流,并使信号从一个分子传递到另一个分子。领导这项研究的北海道大学教授TadashiMatsuda说:"我们的发现为T细胞活化和免疫失调的分子机制提供了宝贵的见解。我们发现,STAP-1在调节免疫反应,尤其是在T细胞的活化和功能方面发挥着重要作用。"STAP-1基因敲除(KO)小鼠脊髓的炎症反应不如野生型(WT)小鼠严重(上图)。与此同时,STAP-1KO小鼠的脊髓与WT小鼠的脊髓相比,脱髓鞘现象(即神经周围的髓鞘脱落)较少(下图)。图片来源:KotaKagohashi等人《免疫学杂志》。2024年2月5日T细胞需要两个信号才能被激活并启动免疫反应。第一个信号涉及识别由其他细胞(称为抗原递呈细胞)递呈的抗原。抗原由T细胞受体识别,T细胞受体是一种存在于T细胞表面的蛋白质复合物。第二个信号由抗原递呈细胞上的分子提供的协同刺激信号组成。研究人员发现,STAP-1能帮助T细胞交流和响应信号,尤其是由T细胞受体触发的信号。缺乏STAP-1的T细胞难以正常接收和传递信号,从而减少了某些称为细胞因子的免疫分子的产生。细胞因子可导致炎症或自身免疫性疾病,在这种疾病中,免疫系统会错误地攻击健康的组织和器官。研究小组还发现,STAP-1与其他参与T细胞信号传导的蛋白质相互作用,形成了一个复杂的网络,有助于调节T细胞的活性。他们观察到,在多发性硬化症和哮喘等疾病模型中,缺乏STAP-1的细胞炎症程度较低,这表明STAP-1可能参与了这些疾病的发展。这些发现标志着我们在了解免疫系统调控方面迈出了重要一步。未来的研究可以在这项工作的基础上,探索STAP-1作为治疗靶点治疗免疫相关疾病的潜力。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423355.htm手机版:https://m.cnbeta.com.tw/view/1423355.htm

封面图片

科学家揭示蛋白质如何驱动癌症生长

科学家揭示蛋白质如何驱动癌症生长在圣路易斯华盛顿大学医学院、麻省理工学院和哈佛大学布罗德研究所、杨百翰大学以及世界各地其他机构的领导下,临床蛋白质组肿瘤分析联合会对驱动癌症的关键蛋白质及其调控方式进行了研究。研究结果于8月14日发表在《细胞》(Cell)和《癌细胞》(CancerCell)杂志上的一组论文中。临床肿瘤蛋白质组学分析联合会由美国国立卫生研究院(NIH)国家癌症研究所资助。资深作者、华盛顿大学戴维-英格利希-史密斯医学特聘教授丁力博士说:"在我们开发更好的癌症疗法的努力中,这种对驱动肿瘤生长的蛋白质的新分析是继癌症基因组测序之后的下一步。通过过去的癌细胞基因组测序工作,我们确定了近300个驱动癌症的基因。现在,我们正在研究这些癌基因所启动的机器的细节--实际导致细胞分裂失控的蛋白质及其调控网络。我们希望这项分析能成为癌症研究人员开发多种肿瘤类型新疗法的重要资源。"研究人员分析了涉及10种不同类型癌症的约1万个蛋白质,他们强调了大量数据在这类分析中的重要性;其中许多重要的癌症驱动蛋白在任何一种癌症中都很罕见,如果对肿瘤类型进行单独研究,就不可能发现这些蛋白。这项分析包括两种不同类型的肺癌以及结直肠癌、卵巢癌、肾癌、头颈癌、子宫癌、胰腺癌、乳腺癌和脑癌。丁力也是巴恩斯犹太医院和华盛顿大学医学院西特曼癌症中心的研究成员。他介绍谁哦"当我们对多种癌症类型进行综合分析时,我们就能提高检测导致癌症生长和扩散的重要蛋白质的能力。综合分析还能让我们找出驱动不同类型癌症的主要共同机制。"除了单个蛋白质的功能外,这些数据还能让研究人员了解蛋白质之间是如何相互作用来促进癌症生长的。如果两种蛋白质的水平相互关联--例如,当其中一种蛋白质的水平较高时,另一种蛋白质的水平也总是较高--这就表明这两种蛋白质是作为伙伴作用的。破坏这种相互作用可能是阻止肿瘤生长的一种有效方法。这些研究(包括丁和布罗德研究所的加德-格茨博士共同领导的一项研究)还揭示了通过化学改变蛋白质以改变其功能的不同方法。研究人员记录了这种化学变化--称为乙酰化和磷酸化的过程--如何改变DNA修复、改变免疫反应、改变DNA的折叠和包装方式,以及其他可能在癌症发生过程中发挥作用的重要分子变化。这项研究还揭示了免疫疗法的有效性。检查点抑制剂等免疫疗法通常对突变较多的癌症最有效,但即便如此,它们也并非对所有患者都有效。研究人员发现,大量突变并不总是导致异常蛋白质的大量存在,而异常蛋白质正是免疫系统攻击肿瘤的目标。丁说:"对某些癌症来说,即使突变有可能产生肿瘤抗原,但如果没有异常蛋白表达或表达很少,这种突变就可能不是治疗的靶点。这可以解释为什么有些病人对免疫疗法没有反应,即使他们似乎应该对免疫疗法有反应。因此,我们的蛋白质组学调查涵盖了肿瘤抗原的表达谱,对于设计针对选定突变的新免疫疗法特别有用。"在另一项研究中,丁的团队确定了DNA甲基化模式,这是另一种能影响基因表达方式的化学变化。这种模式可能是癌症的关键驱动因素。在一项重要发现中,研究小组确定了在某些肿瘤类型中抑制免疫系统的分子开关。这组四项研究的最后一篇论文向更广泛的研究界提供了联盟使用的数据和分析资源。她说:"总的来说,这种对多种癌症类型进行的彻底蛋白质组学和化学修饰分析--与我们长期积累的癌症基因组学知识相结合--提供了另一层信息,我们希望这些信息能帮助解答癌症是如何生长并设法躲避我们的许多最佳治疗方法的许多持续存在的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377313.htm手机版:https://m.cnbeta.com.tw/view/1377313.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人